Hands-on Machine Learning with Python: Implement Neural Network Solutions with Scikit-learn and PyTorch, Pajankar Ashwin, Joshi Aditya
Автор: Liu Yuxi (Hayden) Название: Python Machine Learning by Example - Third Edition: Build intelligent systems using Python, TensorFlow 2, PyTorch, and scikit-learn ISBN: 1800209711 ISBN-13(EAN): 9781800209718 Издательство: Неизвестно Рейтинг: Цена: 47810.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Equipped with the latest updates, this third edition of Python Machine Learning By Example provides a comprehensive course for ML enthusiasts to strengthen their command of ML concepts, techniques, and algorithms.
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data.
The updated edition of this practical book uses concrete examples, minimal theory, and three production-ready Python frameworks--scikit-learn, Keras, and TensorFlow--to help you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you've learned, all you need is programming experience to get started.
Автор: Ayyadevara V. Kishore, Reddy Yeshwanth Название: Modern Computer Vision with PyTorch: Explore deep learning concepts and implement over 50 real-world image applications ISBN: 1839213477 ISBN-13(EAN): 9781839213472 Издательство: Неизвестно Рейтинг: Цена: 80910.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Starting from the basics of neural networks, this book covers over 50 applications of computer vision and helps you to gain a solid understanding of the theory of various architectures before implementing them. Each use case is accompanied by a notebook in GitHub with ready-to-execute code and self-assessment questions.
Integrate scikit-learn with various tools such as NumPy, pandas, imbalanced-learn, and scikit-surprise and use it to solve real-world machine learning problems
Key Features
Delve into machine learning with this comprehensive guide to scikit-learn and scientific Python
Master the art of data-driven problem-solving with hands-on examples
Foster your theoretical and practical knowledge of supervised and unsupervised machine learning algorithms
Book Description
Machine learning is applied everywhere, from business to research and academia, while scikit-learn is a versatile library that is popular among machine learning practitioners. This book serves as a practical guide for anyone looking to provide hands-on machine learning solutions with scikit-learn and Python toolkits.
The book begins with an explanation of machine learning concepts and fundamentals, and strikes a balance between theoretical concepts and their applications. Each chapter covers a different set of algorithms, and shows you how to use them to solve real-life problems. You'll also learn about various key supervised and unsupervised machine learning algorithms using practical examples. Whether it is an instance-based learning algorithm, Bayesian estimation, a deep neural network, a tree-based ensemble, or a recommendation system, you'll gain a thorough understanding of its theory and learn when to apply it. As you advance, you'll learn how to deal with unlabeled data and when to use different clustering and anomaly detection algorithms.
By the end of this machine learning book, you'll have learned how to take a data-driven approach to provide end-to-end machine learning solutions. You'll also have discovered how to formulate the problem at hand, prepare required data, and evaluate and deploy models in production.
What you will learn
Understand when to use supervised, unsupervised, or reinforcement learning algorithms
Find out how to collect and prepare your data for machine learning tasks
Tackle imbalanced data and optimize your algorithm for a bias or variance tradeoff
Apply supervised and unsupervised algorithms to overcome various machine learning challenges
Employ best practices for tuning your algorithm's hyper parameters
Discover how to use neural networks for classification and regression
Build, evaluate, and deploy your machine learning solutions to production
Who this book is for
This book is for data scientists, machine learning practitioners, and anyone who wants to learn how machine learning algorithms work and to build different machine learning models using the Python ecosystem. The book will help you take your knowledge of machine learning to the next level by grasping its ins and outs and tailoring it to your needs. Working knowledge of Python and a basic understanding of underlying mathematical and statistical concepts is required.
Автор: Rothman Denis Название: Transformers for Natural Language Processing: Build innovative deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, RoBER ISBN: 1800565798 ISBN-13(EAN): 9781800565791 Издательство: Неизвестно Рейтинг: Цена: 122600.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This volume reports on excavations in advance of the development of a site in Norton-on-Derwent, North Yorkshire close to the line of the main Roman road running from the crossing point of the River Derwent near Malton Roman fort to York. This site provided much additional information on aspects of the poorly understood `small town` of Delgovicia.
Автор: Sanders Finn Название: Python Machine Learning For Beginners: Handbook For Machine Learning, Deep Learning And Neural Networks Using Python, Scikit-Learn And TensorFlow ISBN: 3903331708 ISBN-13(EAN): 9783903331709 Издательство: Неизвестно Рейтинг: Цена: 24820.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Imagine a world where you can make a computer program learn for itself? What if you were able to create any kind of program that you wanted, even as a beginner programmer, without all of the convoluted codes and other information that makes your head spin?
DO YOU WANT TO LEARN THE BASICS OF PYTHON PROGRAMMING QUICKLY?
Imagine a world where you can make a computer program learn for itself? What if it could recognize who is in a picture or the exact websites that you want to look for when you type it into the program? What if you were able to create any kind of program that you wanted, even as a beginner programmer, without all of the convoluted codes and other information that makes your head spin?
This is actually all possible. The programs that were mentioned before are all a part of machine learning. This is a breakthrough in the world of information technology, which allows the computer to learn how to behave, rather than asking the programmer to think of every single instance that may show up with their user ahead of time. it is taking over the world, and you may be using it now, without even realizing it.
Some of the topics that we will discuss include:
The Fundamentals of Machine Learning, Deep learning, And Neural Networks
How To Set Up Your Environment And Make Sure That Python, TensorFlow And Scikit-Learn Work Well For You
How To Master Neural Network Implementation Using Different Libraries
How Random Forest Algorithms Are Able To Help Out With Machine Learning
How To Uncover Hidden Patterns And Structures With Clustering
How Recurrent Neural Networks Work And When To Use
The Importance Of Linear Classifiers And Why They Need To Be Used In Machine Learning
And Much More
This guidebook is going to provide you with the information you need to get started with Python Machine Learning. If you have an idea for a great program, but you don't have the technical knowledge to make it happen, then this guidebook will help you get started. Machine learning has the capabilities, and Python has the ease, to help you, even as a beginner, create any product that you would like.
If you have a program in mind, or you just want to be able to get some programming knowledge and learn more about the power that comes behind it, then this is the guidebook for you.
Автор: Subramanian Vishnu Название: Deep Learning with PyTorch: A practical approach to building neural network models using PyTorch ISBN: 1788624335 ISBN-13(EAN): 9781788624336 Издательство: Неизвестно Рейтинг: Цена: 53940.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book provides the intuition behind the state of the art Deep Learning architectures such as ResNet, DenseNet, Inception, and encoder-decoder without diving deep into the math of it. It shows how you can implement and use various architectures to solve problems in the area of image classification, language translation and NLP using PyTorch.
Master advanced techniques and algorithms for deep learning with PyTorch using real-world examples
Key Features
Understand how to use PyTorch 1.x to build advanced neural network models
Learn to perform a wide range of tasks by implementing deep learning algorithms and techniques
Gain expertise in domains such as computer vision, NLP, Deep RL, Explainable AI, and much more
Book Description
Deep learning is driving the AI revolution, and PyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch book will help you uncover expert techniques to get the most out of your data and build complex neural network models.
The book starts with a quick overview of PyTorch and explores using convolutional neural network (CNN) architectures for image classification. You'll then work with recurrent neural network (RNN) architectures and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation using generative models and explore the world of generative adversarial networks (GANs). You'll not only build and train your own deep reinforcement learning models in PyTorch but also deploy PyTorch models to production using expert tips and techniques. Finally, you'll get to grips with training large models efficiently in a distributed manner, searching neural architectures effectively with AutoML, and rapidly prototyping models using PyTorch and fast.ai.
By the end of this PyTorch book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models.
What You Will Learn
Implement text and music generating models using PyTorch
Build a deep Q-network (DQN) model in PyTorch
Export universal PyTorch models using Open Neural Network Exchange (ONNX)
Become well-versed with rapid prototyping using PyTorch with fast.ai
Perform neural architecture search effectively using AutoML
Easily interpret machine learning (ML) models written in PyTorch using Captum
Design ResNets, LSTMs, Transformers, and more using PyTorch
Find out how to use PyTorch for distributed training using the torch.distributed API
Who this book is for
This book is for data scientists, machine learning researchers, and deep learning practitioners looking to implement advanced deep learning paradigms using PyTorch 1.x. Working knowledge of deep learning with Python programming is required.
Do you want to learn how to write your own codes and programming and get your computer set up to learn just like humans do? Do you want to learn how to write out codes in deep learning-without having to spend years going to school to learn to code and how all this works? Do you know a bit of Python coding and want to learn more about how this deep learning works?
This guidebook is the tool that you need to not only learn how to do machine learning but also learn how to take this even further and write some of your own codes in deep learning. The field of deep learning is pretty new, and many programmers have not been able to delve into the depths of what we can see with this type of programming-but with the growing market for products and technology that can act and learn just like the human brain, this field is definitely taking off
This book will take some time to explore the different Python libraries that will help you to do some deep learning algorithms in no time. Investing your time in the Python language and learning the different libraries that are needed to turn this basic programming language into a deep learning machine can be one of the best decisions for you.
By learning some of the tips in this book, you will be able to save time and resources when it comes to your deep learning needs. Rather than spending time with other, more difficult programming languages, or having to go take complicated classes to learn how to do these algorithms, we will explore exactly how to do all of the tasks that you need with this type of machine learning.
You will learn:
1. What deep learning is, how it is different from machine learning, and why Python is such a beneficial language to use with the deep learning algorithms;
2. The basics of the three main Python languages that will help you get the work done-including TensorFlow, Keras, and PyTorch;
3. How to install the three Python libraries to help you get started;
4. A closer look at neural networks, what they are, why they are important, and some of the mathematics of making them work;
5. The basics you need to know about TensorFlow and some of the deep learning you can do with this library;
6. The basics of the Keras library and some of the deep learning you can do with this library;
7. A look at the PyTorch library, how it is different from the other two, and the basics of deep learning with this library;
8. And so much more
Even if you are just a beginner, with very little programming knowledge but lots of big dreams and even bigger ideas, this book is going to give you the tools that you need to start with deep learning
Do you want to learn how to write your own codes and programming and get your computer set up to learn just like humans do? Do you want to learn how to write out codes in deep learning-without having to spend years going to school to learn to code and how all this works? Do you know a bit of Python coding and want to learn more about how this deep learning works?
This guidebook is the tool that you need to not only learn how to do machine learning but also learn how to take this even further and write some of your own codes in deep learning. The field of deep learning is pretty new, and many programmers have not been able to delve into the depths of what we can see with this type of programming-but with the growing market for products and technology that can act and learn just like the human brain, this field is definitely taking off
This book will take some time to explore the different Python libraries that will help you to do some deep learning algorithms in no time. Investing your time in the Python language and learning the different libraries that are needed to turn this basic programming language into a deep learning machine can be one of the best decisions for you.
By learning some of the tips in this book, you will be able to save time and resources when it comes to your deep learning needs. Rather than spending time with other, more difficult programming languages, or having to go take complicated classes to learn how to do these algorithms, we will explore exactly how to do all of the tasks that you need with this type of machine learning.
You will learn:
1. What deep learning is, how it is different from machine learning, and why Python is such a beneficial language to use with the deep learning algorithms;
2. The basics of the three main Python languages that will help you get the work done-including TensorFlow, Keras, and PyTorch;
3. How to install the three Python libraries to help you get started;
4. A closer look at neural networks, what they are, why they are important, and some of the mathematics of making them work;
5. The basics you need to know about TensorFlow and some of the deep learning you can do with this library;
6. The basics of the Keras library and some of the deep learning you can do with this library;
7. A look at the PyTorch library, how it is different from the other two, and the basics of deep learning with this library;
8. And so much more
Even if you are just a beginner, with very little programming knowledge but lots of big dreams and even bigger ideas, this book is going to give you the tools that you need to start with deep learning
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz