Advances in Uncertainty Quantification and Optimization Under Uncertainty with Aerospace Applications: Proceedings of the 2020 Uqop International Conf, Vasile Massimiliano, Quagliarella Domenico
Автор: H. Sezer Atamturktur; Babak Moaveni; Costas Papadi Название: Model Validation and Uncertainty Quantification, Volume 3 ISBN: 3319386077 ISBN-13(EAN): 9783319386072 Издательство: Springer Рейтинг: Цена: 156720.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание:
Experimental Validation of the Dual Kalman Filter for Online and Real-time State and Input Estimation.- Comparison of Uncertainty in Passive and Active Vibration Isolation.- Observation DOF's Optimization for Structural Forces Identification.- Nonlinear Structural Finite Element Model Updating using Batch Bayesian Estimation.- A Comparative Assessment of Nonlinear State Estimation Methods for Structural Health Monitoring.- Hierarchical Bayesian Model Updating for Probabilistic Damage Identification.- Nonlinear Structural Finite Element Model Updating Using Stochastic Filtering.- Dispersion-corrected, Operationally Normalized Stabilization Diagrams for Robust Structural Identification.- Online Damage Detection in Plates via Vibration Measurements.- Advanced Modal Analysis of Geometry Consistent Experimental Space-Time Databases in Nonlinear Structural Dynamics.- Comparison of Damage Classification Between Recursive Bayesian Model Selection and Support Vector Machine.- A Comparative Study of Mode Decomposition Techniques to Relate Dynamic Modes Identified Using Parametric and Non-Parametric Methods.- Comparison of Different Approaches for the Model-based Design of Experiments.- Sensitivity Analysis for Test Resource Allocation.- Predictive Validation of Dispersion Models Using a Data Partitioning Methodology.- Experimental Variability on Modal Characteristics of an In-situ Pump.- SICODYN Research Project: Variability and Uncertainty in Structural Dynamics.- Variability of a Bolted Assembly Through an Experimental Modal Analysis.- Bottom-up Calibration of an Industrial Pump Model: Toward a Robust Calibration Paradigm.- Model Validation in Scientific Computing: Considering Robustness to Non-Probabilistic Uncertainty in the Input Parameters.- Robust-optimal Design Using Multifidelity Models.- Robust Modal Test Design Under Epistemic Model Uncertainties.- Clustered Parameters of Calibrated Models when Considering Both Fidelity and Robustness.- Uncertainty Propagation Combining Robust Condensation and Generalized Polynomial Chaos Expansion.- Robust Updating of Operational Boundary Conditions of a Grinding Machine.- Impact of Numerical Model Verification and Validation within FAA Certification.- The Role of Model V&V in the Defining of Specifications.- A Perspective on the Integration of Verification and Validation Into the Decision Making Process.- A MCMC Method for Bayesian System Identification From Large Data Sets.- A MCMC Method for Bayesian System Identification From Large Data Sets.- Reducing MCMC Computational Cost With a Two Layered Bayesian Approach.- Comparison of FRF Correlation Techniques.- Improved Estimation of Frequency Response Covariance.- Cross Orthogonality Check for Structures With Closely Spaced Modes.- Modeling of an Instrumented Building Subjected to Different Ground Motions.- Calibration and Cross-Validation of a Car Component Model Using Repeated Testing.- Structural Dynamics Model Calibration and Validation of a Rectangular Steel Plate Structure.- Human Activity Recognition Using Multinomial Logistic Regression.
Автор: H. Sezer Atamturktur; Babak Moaveni; Costas Papadi Название: Model Validation and Uncertainty Quantification, Volume 3 ISBN: 3319353101 ISBN-13(EAN): 9783319353104 Издательство: Springer Рейтинг: Цена: 200260.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание:
Calibration of System Parameters Under Model Uncertainty.- On the Aggregation and Extrapolation of Uncertainty From Component to System Level Models.- Validation of Strongly Coupled Models: A Framework for Resource Allocation.- Fatigue Monitoring in Metallic Structures Using Vibration Measurements.- Uncertainty Propagation in Experimental Modal Analysis.- Quantification of Prediction Bounds Caused by Model Form Uncertainty.- Composite Fuselage Impact Testing and Simulation: A Model Calibration Exercise.- Noise Sensitivity Evaluation of Autoregressive Features Extracted From Structure Vibration.- Uncertainty Quantification and Integration in Multi-level Problems.- Reliability Quantification of High-speed Naval Vessels Based on SHM Data.- Structural Identification Using Response Measurements Under Base Excitation.- Bayesian FE Model Updating in the Presence of Modeling Errors.- Maintenance Planning Under Uncertainties Using a Continuous-state POMDP Framework.- Achieving Robust Design through Statistical Effect Screening.- Automated Modal Parameter Extraction and Statistical Analysis of the New Carquinez Bridge Response to Ambient Excitations.- Evaluation of a Time Reversal Method with Dynamic Time Warping matching function for human Fall Detection Using Structural Vibrations.- Uncertainty Quantification of Identified Modal Parameters Using the Fisher Information Criterion.- Excitation Related Uncertainty in Ambient Vibration Testing of Bridges.- Experiment-based Validation and Uncertainty Quantification of Coupled Multi-scale Plasticity Models.- Model Calibration and Uncertainty Quantification of A600 Blades.- Validation Assessment for Joint Problem Using an Energy Dissipation Model.- A Bayesian Damage Prognosis Approach Applied to Bearing Failure.- Sensitivity Analysis of Beams Controlled by Shunted Piezoelectric Transducers.- A Principal Component Analysis (PCA) Decomposition Based Validation Metric for use with Full Field Measurement Situations.- FEM Calibration With FRF Damping Equalization.- Evaluating Initial Model for Dynamic Model Updating: Criteria and Application.- Evaluating Convergence of Reduced Order Models Using Nonlinear Normal Modes.- Approximate Bayesian Computation for Finite Element Model Updating.- An Efficient Method for the Quantification of the Frequency Domain Statistical Properties of Short Response Time Series of Dynamic Systems.- Quantifying Uncertainty in Modal Parameters Estimated Using Higher Order Time Domain Algorithms.- Detection of Stress-stiffening Effect on Automotive Components.- Approach to Evaluate Uncertainty in Passive and Active Vibration Reduction.- Project-oriented Validation on a Cantilever Beam Under Vibration Active Control.- Inferring structural variability using modal analysis in a Bayesian framework.- Including SN-Curve Uncertainty in Fatigue Reliability Analyses of Wind Turbines.- Robust Design of Notching Profile under Epistemic Model Uncertainties.- Optimal Selection of Calibration and Validation Test Samples Under Uncertainty.- Uncertainty Quantification in Experimental Structural Dynamics Identification of Composite Material Structures.- Analysis of Numerical Errors in Strongly Coupled Numerical Models.- Robust Expansion of Experimental Mode Shapes Under Epistemic Uncertainties.
Автор: Todd Simmermacher; Scott Cogan; Babak Moaveni; Cos Название: Topics in Model Validation and Uncertainty Quantification, Volume 5 ISBN: 1489996044 ISBN-13(EAN): 9781489996046 Издательство: Springer Рейтинг: Цена: 191550.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Topics in Model Validation and Uncertainty Quantification, Volume : Proceedings of the 31st IMAC, A Conference and Exposition on Structural Dynamics, 2013, the fifth volume of seven from the Conference, brings together contributions to this important area of research and engineering.
Автор: Hester Bijl; Didier Lucor; Siddhartha Mishra; Chri Название: Uncertainty Quantification in Computational Fluid Dynamics ISBN: 3319346660 ISBN-13(EAN): 9783319346663 Издательство: Springer Рейтинг: Цена: 102480.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: It collects seven original review articles that cover improved versions of the Monte Carlo method (the so-called multi-level Monte Carlo method (MLMC)), moment-based stochastic Galerkin methods and modified versions of the stochastic collocation methods that use adaptive stencil selection of the ENO-WENO type in both physical and stochastic space.
Автор: Sullivan, T.J. Название: Introduction to Uncertainty Quantification ISBN: 3319233947 ISBN-13(EAN): 9783319233949 Издательство: Springer Рейтинг: Цена: 55890.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This text provides a framework in which the main objectives of the field of uncertainty quantification (UQ) are defined and an overview of the range of mathematical methods by which they can be achieved. Complete with exercises throughout, the book will equip readers with both theoretical understanding and practical experience of the key mathematical and algorithmic tools underlying the treatment of uncertainty in modern applied mathematics. Students and readers alike are encouraged to apply the mathematical methods discussed in this book to their own favorite problems to understand their strengths and weaknesses, also making the text suitable for a self-study.
Uncertainty quantification is a topic of increasing practical importance at the intersection of applied mathematics, statistics, computation and numerous application areas in science and engineering. This text is designed as an introduction to UQ for senior undergraduate and graduate students with a mathematical or statistical background and also for researchers from the mathematical sciences or from applications areas who are interested in the field.
Автор: T. Simmermacher; Scott Cogan; L.G. Horta; R. Barth Название: Topics in Model Validation and Uncertainty Quantification, Volume 4 ISBN: 1489998667 ISBN-13(EAN): 9781489998668 Издательство: Springer Рейтинг: Цена: 174130.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Topics in Model Validation and Uncertainty Quantification, Volume 4, Proceedings of the 30th IMAC, A Conference and Exposition on Structural Dynamics, 2012, the fourth volume of six from the Conference, brings together 19 contributions to this important area of research and engineering.
Автор: Sullivan, T.j. Название: Introduction to uncertainty quantification ISBN: 3319794787 ISBN-13(EAN): 9783319794785 Издательство: Springer Рейтинг: Цена: 55890.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This text provides a framework in which the main objectives of the field of uncertainty quantification (UQ) are defined and an overview of the range of mathematical methods by which they can be achieved.
Автор: Francesco Montomoli Название: Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines ISBN: 3030065529 ISBN-13(EAN): 9783030065522 Издательство: Springer Рейтинг: Цена: 130430.00 T Наличие на складе: Поставка под заказ. Описание: This book introduces design techniques developed to increase the safety of aircraft engines, and demonstrates how the application of stochastic methods can overcome problems in the accurate prediction of engine lift caused by manufacturing error. This in turn addresses the issue of achieving required safety margins when hampered by limits in current design and manufacturing methods. The authors show that avoiding the potential catastrophe generated by the failure of an aircraft engine relies on the prediction of the correct behaviour of microscopic imperfections. This book shows how to quantify the possibility of such failure, and that it is possible to design components that are inherently less risky and more reliable.This new, updated and significantly expanded edition gives an introduction to engine reliability and safety to contextualise this important issue, evaluates newly-proposed methods for uncertainty quantification as applied to jet engines.Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines will be of use to gas turbine manufacturers and designers as well as CFD practitioners, specialists and researchers. Graduate and final year undergraduate students in aerospace or mathematical engineering may also find it of interest.
Автор: Hester Bijl; Didier Lucor; Siddhartha Mishra; Chri Название: Uncertainty Quantification in Computational Fluid Dynamics ISBN: 3319008846 ISBN-13(EAN): 9783319008844 Издательство: Springer Рейтинг: Цена: 93160.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: It collects seven original review articles that cover improved versions of the Monte Carlo method (the so-called multi-level Monte Carlo method (MLMC)), moment-based stochastic Galerkin methods and modified versions of the stochastic collocation methods that use adaptive stencil selection of the ENO-WENO type in both physical and stochastic space.
Автор: Souza De Cursi Eduardo Название: Uncertainty Quantification and Stochastic Modelling with Excel ISBN: 3030777561 ISBN-13(EAN): 9783030777562 Издательство: Springer Рейтинг: Цена: 111790.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book presents techniques for determining uncertainties in numerical solutions with applications in the fields of business administration, civil engineering, and economics, using Excel as a computational tool.
Автор: Vasile Massimiliano Название: Optimization Under Uncertainty with Applications to Aerospace Engineering ISBN: 3030601684 ISBN-13(EAN): 9783030601683 Издательство: Springer Рейтинг: Цена: 149060.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: In an expanding world with limited resources, optimization and uncertainty quantification have become a necessity when handling complex systems and processes. This book provides the foundational material necessary for those who wish to embark on advanced research at the limits of computability, collecting together lecture material from leading experts across the topics of optimization, uncertainty quantification and aerospace engineering. The aerospace sector in particular has stringent performance requirements on highly complex systems, for which solutions are expected to be optimal and reliable at the same time. The text covers a wide range of techniques and methods, from polynomial chaos expansions for uncertainty quantification to Bayesian and Imprecise Probability theories, and from Markov chains to surrogate models based on Gaussian processes. The book will serve as a valuable tool for practitioners, researchers and PhD students.
Автор: Vasile Massimiliano Название: Optimization Under Uncertainty with Applications to Aerospace Engineering ISBN: 303060165X ISBN-13(EAN): 9783030601652 Издательство: Springer Цена: 149060.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: - Introduction to Spectral Methods for Uncertainty Quantification. - Introduction to Imprecise Probabilities. - Uncertainty Quantification in Lasso-Type Regularization Problems. - Reliability Theory. - An Introduction to Imprecise Markov Chains. - Fundamentals of Filtering. - Introduction to Optimisation. - An Introduction to Many-Objective Evolutionary Optimization. - Multilevel Optimisation. - Sequential Parameter Optimization for Mixed-Discrete Problems. - Parameter Control in Evolutionary Optimisation. - Response Surface Methodology. - Risk Measures in the Context of Robust and Reliability Based Optimization. - Best Practices for Surrogate Based Uncertainty Quantification in Aerodynamics and Application to Robust Shape Optimization. - In-flight Icing: Modeling, Prediction, and Uncertainty. - Uncertainty Treatment Applications: High-Enthalpy Flow Ground Testing. - Introduction to Evidence-Based Robust Optimisation.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz