Bayesian modeling and computation in python, Martin, Osvaldo A. (conicet And Aalto University) Kumar, Ravin Lao, Junpeng
Автор: Dirk P. Kroese; Joshua C.C. Chan Название: Statistical Modeling and Computation ISBN: 149395332X ISBN-13(EAN): 9781493953325 Издательство: Springer Рейтинг: Цена: 93150.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book provides an introduction to modern statistics. It also offers an integrated treatment of mathematical statistics and statistical computation, emphasizing statistical modeling, computational techniques, and applications.
Автор: Kroese Dirk P Название: Statistical Modeling and Computation ISBN: 1461487749 ISBN-13(EAN): 9781461487746 Издательство: Springer Рейтинг: Цена: 234490.00 T Наличие на складе: Нет в наличии. Описание: This textbook on statistical modeling and statistical inference will assist advanced undergraduate and graduate students. In Part III, the authors address the statistical analysis and computation of various advanced models, such as generalized linear, state-space and Gaussian models.
Автор: Sisson Название: Handbook of Approximate Bayesian Computation ISBN: 1439881502 ISBN-13(EAN): 9781439881507 Издательство: Taylor&Francis Рейтинг: Цена: 178640.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: The Handbook of ABC provides illuminating insight into the world of Bayesian modelling for intractable models for both experts and newcomers alike. It is an essential reference book for anyone interested in learning about and implementing ABC techniques to analyse complex models in the modern world.
Название: Monte Carlo Methods in Bayesian Computation. M.-H. Chen, Q.-M. Shao, J.G. Ibrahim. ISBN: 146127074X ISBN-13(EAN): 9781461270744 Издательство: Springer Рейтинг: Цена: 153720.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Sampling from the posterior distribution and computing posterior quanti- ties of interest using Markov chain Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput- ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo (MC) methods for estimation of posterior summaries, improv- ing simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, Highest Poste- rior Density (HPD) interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. Also extensive discussion is given for computations in- volving model comparisons, including both nested and nonnested models. Marginal likelihood methods, ratios of normalizing constants, Bayes fac- tors, the Savage-Dickey density ratio, Stochastic Search Variable Selection (SSVS), Bayesian Model Averaging (BMA), the reverse jump algorithm, and model adequacy using predictive and latent residual approaches are also discussed. The book presents an equal mixture of theory and real applications.
Автор: Fred J. Hickernell, Peter Kritzer Название: Multivariate Algorithms and Information-Based Complexity ISBN: 3110633116 ISBN-13(EAN): 9783110633115 Издательство: Walter de Gruyter Цена: 128870.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание:
The series is devoted to the publication of high-level monographs, surveys and proceedings which cover the whole spectrum of computational and applied mathematics.
The books of this series are addressed to both specialists and advanced students.
Interested authors may submit book proposals to the Managing Editor or to any member of the Editorial Board.
Managing Editor Ulrich Langer, RICAM, Linz, Austria; Johannes Kepler University Linz, Austria
Автор: Heard Nick Название: An Introduction to Bayesian Inference, Methods and Computation ISBN: 3030828077 ISBN-13(EAN): 9783030828073 Издательство: Springer Рейтинг: Цена: 60550.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: The course covers the fundamental philosophy and principles of Bayesian inference, including the reasoning behind the prior/likelihood model construction synonymous with Bayesian methods, through to advanced topics such as nonparametrics, Gaussian processes and latent factor models.
Автор: Gelman Название: Bayesian Data Analysis, Third Edition ISBN: 1439840954 ISBN-13(EAN): 9781439840955 Издательство: Taylor&Francis Рейтинг: Цена: 73920.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Winner of the 2016 De Groot Prize from the International Society for Bayesian Analysis Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Автор: Rakhee Kulshrestha Название: Mathematical modeling and computation of real-time problems ISBN: 0367517434 ISBN-13(EAN): 9780367517434 Издательство: Taylor&Francis Рейтинг: Цена: 163330.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book covers an interdisciplinary approach for understanding mathematical modeling by offering a collection of models, solved problems related to the models the methodologies employed, and the results using projects and case studies with insight into the operation of substantial real-time systems.
Автор: Ntzoufras, Ioannis Название: Bayesian Modeling Using WinBUGS ISBN: 047014114X ISBN-13(EAN): 9780470141144 Издательство: Wiley Рейтинг: Цена: 147790.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Detailed examples will be provided ranging from the very basic to the more advanced; they will also reflect realistic data sets (available from the Internet). An underlying emphasis is given to Generalized Linear Models (GLMs) that are familiar to most readers and researchers.
Автор: Joseph K. Blitzstein, Jessica Hwang Название: Introduction to Probability, Second Edition ISBN: 1138369918 ISBN-13(EAN): 9781138369917 Издательство: Taylor&Francis Рейтинг: Цена: 74510.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Assumes one-semester of calculus. "Stories" make distributions (Normal, Binomial, Poisson that are widely-used in statistics) easier to remember, understand. Many books write down formulas without explaining clearly why these particular distributions are important or how they are all connected.
Автор: Darwiche Название: Modeling and Reasoning with Bayesian Networks ISBN: 1107678420 ISBN-13(EAN): 9781107678422 Издательство: Cambridge Academ Рейтинг: Цена: 65470.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book provides a thorough introduction to the formal foundations and practical applications of Bayesian networks. It provides an extensive discussion of techniques for building Bayesian networks that model real-world situations, including techniques for synthesizing models from design, learning models from data, and debugging models using sensitivity analysis.
Автор: Chen Ming-Hui, Shao Qi-Man, Ibrahim Joseph G. Название: Monte Carlo Methods in Bayesian Computation ISBN: 0387989358 ISBN-13(EAN): 9780387989358 Издательство: Springer Рейтинг: Цена: 139750.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book examines advanced Bayesian computational methods. It presents methods for sampling from posterior distributions and discusses how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples. This book examines each of these issues in detail and heavily focuses on computing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo methods for estimation of posterior quantities, improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss computions involving model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictive and latent residual approaches.The book presents an equal mixture of theory and applications involving real data. The book is intended as a graduate textbook or a reference book for a one semester course at the advanced masters or Ph.D. level. It would also serve as a useful reference book for applied or theoretical researchers as well as practitioners.Ming-Hui Chen is Associate Professor of Mathematical Sciences at Worcester Polytechnic Institute, Qu-Man Shao is Assistant Professor of Mathematics at the University of Oregon. Joseph G. Ibrahim is Associate Professor of Biostatistics at the Harvard School of Public Health and Dana-Farber Cancer Institute.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz