Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Bayesian modeling and computation in python, Martin, Osvaldo A. (conicet And Aalto University) Kumar, Ravin Lao, Junpeng


Варианты приобретения
Цена: 76550.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: 1 шт.  Склад Америка: 215 шт.  
При оформлении заказа до: 2025-08-02
Ориентировочная дата поставки: Август-начало Сентября

Добавить в корзину
в Мои желания

Автор: Martin, Osvaldo A. (conicet And Aalto University) Kumar, Ravin Lao, Junpeng
Название:  Bayesian modeling and computation in python
ISBN: 9780367894368
Издательство: Taylor&Francis
Классификация:
ISBN-10: 036789436X
Обложка/Формат: Hardcover
Страницы: 398
Вес: 1.02 кг.
Дата издания: 29.12.2021
Серия: Chapman & hall/crc texts in statistical science
Язык: English
Иллюстрации: 12 tables, black and white; 83 line drawings, color; 118 line drawings, black and white; 83 illustrations, color; 118 illustrations, black and white
Размер: 25.40 x 17.78 x 2.39 cm
Читательская аудитория: Tertiary education (us: college)
Рейтинг:
Поставляется из: Европейский союз
Описание: Bayesian Modeling and Computation in Python aims to help beginner Bayesian practitioners to become intermediate modelers. It uses a hands on approach with PyMC3, Tensorflow Probability, ArviZ and other libraries focusing on the practice of applied statistics with references to the underlying mathematical theory.

Statistical Modeling and Computation

Автор: Dirk P. Kroese; Joshua C.C. Chan
Название: Statistical Modeling and Computation
ISBN: 149395332X ISBN-13(EAN): 9781493953325
Издательство: Springer
Рейтинг:
Цена: 93150.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book provides an introduction to modern statistics. It also offers an integrated treatment of mathematical statistics and statistical computation, emphasizing statistical modeling, computational techniques, and applications.

Statistical Modeling and Computation

Автор: Kroese Dirk P
Название: Statistical Modeling and Computation
ISBN: 1461487749 ISBN-13(EAN): 9781461487746
Издательство: Springer
Рейтинг:
Цена: 234490.00 T
Наличие на складе: Нет в наличии.
Описание: This textbook on statistical modeling and statistical inference will assist advanced undergraduate and graduate students. In Part III, the authors address the statistical analysis and computation of various advanced models, such as generalized linear, state-space and Gaussian models.

Handbook of Approximate Bayesian Computation

Автор: Sisson
Название: Handbook of Approximate Bayesian Computation
ISBN: 1439881502 ISBN-13(EAN): 9781439881507
Издательство: Taylor&Francis
Рейтинг:
Цена: 178640.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The Handbook of ABC provides illuminating insight into the world of Bayesian modelling for intractable models for both experts and newcomers alike. It is an essential reference book for anyone interested in learning about and implementing ABC techniques to analyse complex models in the modern world.

Monte Carlo Methods in Bayesian Computation. M.-H. Chen, Q.-M. Shao, J.G. Ibrahim.

Название: Monte Carlo Methods in Bayesian Computation. M.-H. Chen, Q.-M. Shao, J.G. Ibrahim.
ISBN: 146127074X ISBN-13(EAN): 9781461270744
Издательство: Springer
Рейтинг:
Цена: 153720.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Sampling from the posterior distribution and computing posterior quanti- ties of interest using Markov chain Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput- ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo (MC) methods for estimation of posterior summaries, improv- ing simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, Highest Poste- rior Density (HPD) interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. Also extensive discussion is given for computations in- volving model comparisons, including both nested and nonnested models. Marginal likelihood methods, ratios of normalizing constants, Bayes fac- tors, the Savage-Dickey density ratio, Stochastic Search Variable Selection (SSVS), Bayesian Model Averaging (BMA), the reverse jump algorithm, and model adequacy using predictive and latent residual approaches are also discussed. The book presents an equal mixture of theory and real applications.

Multivariate Algorithms and Information-Based Complexity

Автор: Fred J. Hickernell, Peter Kritzer
Название: Multivariate Algorithms and Information-Based Complexity
ISBN: 3110633116 ISBN-13(EAN): 9783110633115
Издательство: Walter de Gruyter
Цена: 128870.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

The series is devoted to the publication of high-level monographs, surveys and proceedings which cover the whole spectrum of computational and applied mathematics.

The books of this series are addressed to both specialists and advanced students.

Interested authors may submit book proposals to the Managing Editor or to any member of the Editorial Board.

Managing Editor
Ulrich Langer, RICAM, Linz, Austria; Johannes Kepler University Linz, Austria

Editorial Board
Hansjorg Albrecher, University of Lausanne, Switzerland
Ronald H. W. Hoppe, University of Houston, USA
Karl Kunisch, RICAM, Linz, Austria; University of Graz, Austria
Harald Niederreiter, RICAM, Linz, Austria
Otmar Scherzer, RICAM, Linz, Austria; University of Vienna, Austria
Christian Schmeiser, University of Vienna, Austria


An Introduction to Bayesian Inference, Methods and Computation

Автор: Heard Nick
Название: An Introduction to Bayesian Inference, Methods and Computation
ISBN: 3030828077 ISBN-13(EAN): 9783030828073
Издательство: Springer
Рейтинг:
Цена: 60550.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The course covers the fundamental philosophy and principles of Bayesian inference, including the reasoning behind the prior/likelihood model construction synonymous with Bayesian methods, through to advanced topics such as nonparametrics, Gaussian processes and latent factor models.

Bayesian Data Analysis, Third Edition

Автор: Gelman
Название: Bayesian Data Analysis, Third Edition
ISBN: 1439840954 ISBN-13(EAN): 9781439840955
Издательство: Taylor&Francis
Рейтинг:
Цена: 73920.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Winner of the 2016 De Groot Prize from the International Society for Bayesian Analysis Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Mathematical modeling and computation of real-time problems

Автор: Rakhee Kulshrestha
Название: Mathematical modeling and computation of real-time problems
ISBN: 0367517434 ISBN-13(EAN): 9780367517434
Издательство: Taylor&Francis
Рейтинг:
Цена: 163330.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book covers an interdisciplinary approach for understanding mathematical modeling by offering a collection of models, solved problems related to the models the methodologies employed, and the results using projects and case studies with insight into the operation of substantial real-time systems.

Bayesian Modeling Using WinBUGS

Автор: Ntzoufras, Ioannis
Название: Bayesian Modeling Using WinBUGS
ISBN: 047014114X ISBN-13(EAN): 9780470141144
Издательство: Wiley
Рейтинг:
Цена: 147790.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Detailed examples will be provided ranging from the very basic to the more advanced; they will also reflect realistic data sets (available from the Internet). An underlying emphasis is given to Generalized Linear Models (GLMs) that are familiar to most readers and researchers.

Introduction to Probability, Second Edition

Автор: Joseph K. Blitzstein, Jessica Hwang
Название: Introduction to Probability, Second Edition
ISBN: 1138369918 ISBN-13(EAN): 9781138369917
Издательство: Taylor&Francis
Рейтинг:
Цена: 74510.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Assumes one-semester of calculus. "Stories" make distributions (Normal, Binomial, Poisson that are widely-used in statistics) easier to remember, understand. Many books write down formulas without explaining clearly why these particular distributions are important or how they are all connected.

Modeling and Reasoning with Bayesian Networks

Автор: Darwiche
Название: Modeling and Reasoning with Bayesian Networks
ISBN: 1107678420 ISBN-13(EAN): 9781107678422
Издательство: Cambridge Academ
Рейтинг:
Цена: 65470.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book provides a thorough introduction to the formal foundations and practical applications of Bayesian networks. It provides an extensive discussion of techniques for building Bayesian networks that model real-world situations, including techniques for synthesizing models from design, learning models from data, and debugging models using sensitivity analysis.

Monte Carlo Methods in Bayesian Computation

Автор: Chen Ming-Hui, Shao Qi-Man, Ibrahim Joseph G.
Название: Monte Carlo Methods in Bayesian Computation
ISBN: 0387989358 ISBN-13(EAN): 9780387989358
Издательство: Springer
Рейтинг:
Цена: 139750.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book examines advanced Bayesian computational methods. It presents methods for sampling from posterior distributions and discusses how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples. This book examines each of these issues in detail and heavily focuses on computing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo methods for estimation of posterior quantities, improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss computions involving model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictive and latent residual approaches.The book presents an equal mixture of theory and applications involving real data. The book is intended as a graduate textbook or a reference book for a one semester course at the advanced masters or Ph.D. level. It would also serve as a useful reference book for applied or theoretical researchers as well as practitioners.Ming-Hui Chen is Associate Professor of Mathematical Sciences at Worcester Polytechnic Institute, Qu-Man Shao is Assistant Professor of Mathematics at the University of Oregon. Joseph G. Ibrahim is Associate Professor of Biostatistics at the Harvard School of Public Health and Dana-Farber Cancer Institute.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия