Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Interpreting Machine Learning Models: Learn Model Interpretability and Explainability Methods, Nandi Anirban, Pal Aditya Kumar


Варианты приобретения
Цена: 55170.00T
Кол-во:
 о цене
Наличие: Невозможна поставка.

в Мои желания

Автор: Nandi Anirban, Pal Aditya Kumar
Название:  Interpreting Machine Learning Models: Learn Model Interpretability and Explainability Methods
ISBN: 9781484278017
Издательство: Apress
Классификация:

ISBN-10: 1484278011
Обложка/Формат: Paperback
Страницы: 368
Вес: 0.63 кг.
Дата издания: 30.12.2021
Язык: English
Издание: 1st ed.
Иллюстрации: 19 illustrations, color; 167 illustrations, black and white; xxiii, 343 p. 186 illus., 19 illus. in color.
Размер: 25.40 x 17.78 x 1.93 cm
Читательская аудитория: Professional & vocational
Подзаголовок: Learn model interpretability and explainability methods
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: США
Описание: Chapter 1: Introduction to Machine Learning DomainChapter Goal: The books opening chapter will talk about the journey of machine learning models and why model interpretability became so important in the recent times. This chapter will also cover some of the basic black box modelling algorithms in brief Sub-Topics: - Journey of machine learning domain- Journey of machine learning algorithms - Why only reporting accuracy is not enough for models
Chapter 2: Introduction to Model InterpretabilityChapter Goal: This chapter will talk about the importance and need of interpretability and how businesses employ model interpretability for their decisionsSub-Topics: - Why is interpretability needed for machine learning models- Motivation behind using model interpretability- Understand social and commercial motivations for machine learning interpretability, fairness, accountability, and transparency- Get a definition of interpretability and learn about the groups leading interpretability research
Chapter 3: Machine Learning Interpretability TaxonomyChapter Goal: A machine learning taxonomy is presented in this section. This will be used to characterize the interpretability of various popular machine learning techniques.Sub topics: - Understanding and trust- A scale for interpretability- Global and local interpretability- Model-agnostic and model-specific interpretability
Chapter 4: Common Properties of Explanations Generated by Interpretability MethodsChapter goal: The purpose of this chapter to explain readers about evaluation metrics for various interpretability methods. This will help readers understand which methods to choose for specific use cases
Sub topics: - Degree of importance - Stability- Consistency - Certainty- Novelty
Chapter 5: Timeline of Model interpretability Methods DiscoveryChapter goal: This chapter will talk about the timeline and will give details about when most common methods of interpretability were discovered
Chapter 6: Unified Framework for Model ExplanationsChapter goal: Each method is determined by three choices: how it handles features, what model behavior it analyzes, and how it summarizes feature influence. The chapter will focus in detail about each step and will try to map different methods to each step by giving detailed examplesSub topics1: - Removal based explanations- Summarization based explanations
Chapter 7: Different Types of Removal Based ExplanationsChapter goal: This chapter will talk about the different types of removal based methods and how to implement them along with details of examples and Python packages, real life use cases etc.Sub topics: - IME(2009)- IME(2010)- QII- SHAP- KernelSHAP- TreeSHAP- LossSHAP- SAGE- Shapley- Shapley- Permutation- Conditional- Feature- Univariate- L2X- INVASE- LIME- LIME- PredDiff- Occlusion- CXPlain- RISE- MM- MIR- MP- EP- FIDO-CA
Chapter 8: Different Types of Summarization Based ExplanationsChapter goal: This chapter will talk about the different types of summarization based methods and how to implement them along with details of examples and python p

Дополнительное описание: Chapter 1: The Evolution of Machine Learning.- Chapter 2: Introduction to Model interpretability. - Chapter 3: Machine Learning Interpretability Taxonomy.- Chapter 4: Common Properties of Explanations Generated by Interpretability Methods.- Chapter 5: Hum


Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data: 4th Internat

Автор: Reyes Mauricio, Henriques Abreu Pedro, Cardoso Jaime
Название: Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data: 4th Internat
ISBN: 3030874435 ISBN-13(EAN): 9783030874438
Издательство: Springer
Рейтинг:
Цена: 51230.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: iMIMIC 2021 Workshop.- Interpretable Deep Learning for Surgical Tool Management.- Soft Attention Improves Skin Cancer Classification Performance.- Deep Gradient based on Collective Arti cial Intelligence for AD Diagnosis and Prognosis.- This explains That: Congruent Image-Report Generation for Explainable Medical Image Analysis with Cyclic Generative Adversarial Networks.- Visual Explanation by Unifying Adversarial Generation and Feature Importance Attributions.- The Effect of the Loss on Generalization: Empirical Study on Synthetic Lung Nodule Data.- Voxel-level Importance Maps for Interpretable Brain Age Estimation.- TDA4MedicalData Workshop.- Lattice Paths for Persistent Diagrams.- Neighborhood complex based machine learning (NCML) models for drug design.- Predictive modelling of highly multiplexed tumour tissue images by graph neural networks.- Statistical modeling of pulmonary vasculatures with topological priors in CT volumes.- Topological Detection of Alzheimer's Disease using Betti Curves.



Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия