Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Nonlinear Dimensionality Reduction Techniques: A Data Structure Preservation Approach, Lespinats Sylvain, Colange Benoit, Dutykh Denys


Варианты приобретения
Цена: 121110.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 117 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Lespinats Sylvain, Colange Benoit, Dutykh Denys
Название:  Nonlinear Dimensionality Reduction Techniques: A Data Structure Preservation Approach
ISBN: 9783030810252
Издательство: Springer
Классификация:





ISBN-10: 3030810259
Обложка/Формат: Hardcover
Страницы: 260
Вес: 0.58 кг.
Дата издания: 14.10.2021
Серия: Philosophical studies series
Язык: English
Издание: 1st ed. 2022
Иллюстрации: 88 illustrations, color; 12 illustrations, black and white; xliii, 247 p. 100 illus., 88 illus. in color.; 88 illustrations, color; 12 illustrations,
Размер: 23.39 x 15.60 x 1.75 cm
Читательская аудитория: Professional & vocational
Подзаголовок: Workshops of the european conference on machine learning and knowledge discovery in databases (ecml pkdd 2020): sogood 2020, pdfl 2020, mlcs 2020, nfmcp 2020, dina 2020, edml 2020, xkdd 2020 and inra 2020, ghent, belgium, september 14-18, 2020, proce
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book proposes tools for analysis of multidimensional and metric data, by establishing a state-of-the-art of the existing solutions and developing new ones. This book reviews existing techniques for visual data exploration and dimensionality reduction such as tSNE and Isomap, and proposes new solutions to challenges in that field.

Tensor Networks for Dimensionality Reduction and Large-Scale Optimization: Part 2 Applications and Future Perspectives

Автор: Cichocki Andrzej, Lee Namgil, Oseledets Ivan
Название: Tensor Networks for Dimensionality Reduction and Large-Scale Optimization: Part 2 Applications and Future Perspectives
ISBN: 168083276X ISBN-13(EAN): 9781680832761
Издательство: Неизвестно
Рейтинг:
Цена: 91040.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This monograph builds on Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions by discussing tensor network models for super-compressed higher-order representation of data/parameters and cost functions, together with an outline of their applications in machine learning and data analytics. A particular emphasis is on elucidating, through graphical illustrations, that by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volume of data/parameters, thereby alleviating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification, generalized eigenvalue decomposition and in the optimization of deep neural networks. The monograph focuses on tensor train (TT) and Hierarchical Tucker (HT) decompositions and their extensions, and on demonstrating the ability of tensor networks to provide scalable solutions for a variety of otherwise intractable large-scale optimization problems. Tensor Networks for Dimensionality Reduction and Large-scale Optimization Parts 1 and 2 can be used as stand-alone texts, or together as a comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions. See also: Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions. ISBN 978-1-68083-222-8

Open Problems in Spectral Dimensionality Reduction

Автор: Harry Strange; Reyer Zwiggelaar
Название: Open Problems in Spectral Dimensionality Reduction
ISBN: 3319039423 ISBN-13(EAN): 9783319039428
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Dimensionality reduction has proven useful in a wide range of problem domains and so this book will be applicable to anyone with a solid grounding in statistics and computer science seeking to apply spectral dimensionality to their work.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия