Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Deep Learning in Practice, Ghayoumi Mehdi


Варианты приобретения
Цена: 80630.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 148 шт.  
При оформлении заказа до: 2025-09-29
Ориентировочная дата поставки: начало Ноября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Ghayoumi Mehdi
Название:  Deep Learning in Practice
ISBN: 9780367458621
Издательство: Taylor&Francis
Классификация:






ISBN-10: 0367458624
Обложка/Формат: Hardcover
Страницы: 198
Вес: 0.47 кг.
Дата издания: 01.12.2021
Язык: English
Иллюстрации: 15 tables, black and white; 86 line drawings, black and white; 86 illustrations, black and white
Размер: 23.39 x 15.60 x 1.42 cm
Читательская аудитория: Tertiary education (us: college)
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Европейский союз
Описание: Deep Learning in Practice helps you learn how to develop and optimize a model for your projects using Deep Learning (DL) methods and architectures. It will serve as a useful reference for learning deep learning fundamentals and implementing a deep learning model for any project, step by step.

Deep Learning

Автор: Goodfellow Ian, Bengio Yoshua, Courville Aaron
Название: Deep Learning
ISBN: 0262035618 ISBN-13(EAN): 9780262035613
Издательство: MIT Press
Рейтинг:
Цена: 90290.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.

"Written by three experts in the field, Deep Learning is the only comprehensive book on the subject."
-- Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX

Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.

The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.

Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.


Integrating Deep Learning Algorithms to Overcome Challenges in Big Data Analytics

Автор: Sujatha R., Aarthy S. L., Vettriselvan R.
Название: Integrating Deep Learning Algorithms to Overcome Challenges in Big Data Analytics
ISBN: 0367466635 ISBN-13(EAN): 9780367466633
Издательство: Taylor&Francis
Рейтинг:
Цена: 117390.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Data science revolves around two giants, which are big data analytics and deep learning. It is becoming challenging to handle and retrieve useful information due to how fast data is expanding. This book presents the technologies and tools to simplify and streamline the formation of big data along with deep learning systems.

Deep Learning for NLP and Speech Recognition

Автор: Uday Kamath; John Liu; James Whitaker
Название: Deep Learning for NLP and Speech Recognition
ISBN: 3030145956 ISBN-13(EAN): 9783030145958
Издательство: Springer
Рейтинг:
Цена: 93160.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition. With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights into using the tools and libraries for real-world applications. Deep Learning for NLP and Speech Recognition explains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience.

Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape means that there are few available texts that offer the material in this book.
The book is organized into three parts, aligning to different groups of readers and their expertise. The three parts are:
Machine Learning, NLP, and Speech IntroductionThe first part has three chapters that introduce readers to the fields of NLP, speech recognition, deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries. Deep Learning BasicsThe five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks. Advanced Deep Learning Techniques for Text and Speech
The third part has five chapters that discuss the latest and cutting-edge research in the areas of deep learning that intersect with NLP and speech. Topics including attention mechanisms, memory augmented networks, transfer learning, multi-task learning, domain adaptation, reinforcement learning, and end-to-end deep learning for speech recognition are covered using case studies.

Neural Networks and Deep Learning: A Textbook

Автор: Aggarwal Charu C.
Название: Neural Networks and Deep Learning: A Textbook
ISBN: 3030068560 ISBN-13(EAN): 9783030068561
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Нет в наличии.
Описание: This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories:The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec.Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines.Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10.The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics

Автор: Le Lu
Название: Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics
ISBN: 3030139689 ISBN-13(EAN): 9783030139681
Издательство: Springer
Рейтинг:
Цена: 149060.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases.

Deep Reinforcement Learning

Автор: Mohit Sewak
Название: Deep Reinforcement Learning
ISBN: 9811382840 ISBN-13(EAN): 9789811382840
Издательство: Springer
Рейтинг:
Цена: 121110.00 T
Наличие на складе: Нет в наличии.
Описание: This book starts by presenting the basics of reinforcement learning using highly intuitive and easy-to-understand examples and applications, and then introduces the cutting-edge research advances that make reinforcement learning capable of out-performing most state-of-art systems, and even humans in a number of applications. The book not only equips readers with an understanding of multiple advanced and innovative algorithms, but also prepares them to implement systems such as those created by Google Deep Mind in actual code.This book is intended for readers who want to both understand and apply advanced concepts in a field that combines the best of two worlds – deep learning and reinforcement learning – to tap the potential of ‘advanced artificial intelligence’ for creating real-world applications and game-winning algorithms.


Deep Reinforcement Learning with Guaranteed Performance

Автор: Yinyan Zhang; Shuai Li; Xuefeng Zhou
Название: Deep Reinforcement Learning with Guaranteed Performance
ISBN: 3030333833 ISBN-13(EAN): 9783030333836
Издательство: Springer
Рейтинг:
Цена: 121110.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book discusses methods and algorithms for the near-optimal adaptive control of nonlinear systems, including the corresponding theoretical analysis and simulative examples, and presents two innovative methods for the redundancy resolution of redundant manipulators with consideration of parameter uncertainty and periodic disturbances.It also reports on a series of systematic investigations on a near-optimal adaptive control method based on the Taylor expansion, neural networks, estimator design approaches, and the idea of sliding mode control, focusing on the tracking control problem of nonlinear systems under different scenarios. The book culminates with a presentation of two new redundancy resolution methods; one addresses adaptive kinematic control of redundant manipulators, and the other centers on the effect of periodic input disturbance on redundancy resolution.Each self-contained chapter is clearly written, making the book accessible to graduate students as well as academic and industrial researchers in the fields of adaptive and optimal control, robotics, and dynamic neural networks.

Deep Learning in Healthcare

Автор: Yen-Wei Chen; Lakhmi C. Jain
Название: Deep Learning in Healthcare
ISBN: 3030326055 ISBN-13(EAN): 9783030326050
Издательство: Springer
Рейтинг:
Цена: 149060.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book provides a comprehensive overview of deep learning (DL) in medical and healthcare applications, including the fundamentals and current advances in medical image analysis, state-of-the-art DL methods for medical image analysis and real-world, deep learning-based clinical computer-aided diagnosis systems.Deep learning (DL) is one of the key techniques of artificial intelligence (AI) and today plays an important role in numerous academic and industrial areas. DL involves using a neural network with many layers (deep structure) between input and output, and its main advantage of is that it can automatically learn data-driven, highly representative and hierarchical features and perform feature extraction and classification on one network. DL can be used to model or simulate an intelligent system or process using annotated training data.Recently, DL has become widely used in medical applications, such as anatomic modelling, tumour detection, disease classification, computer-aided diagnosis and surgical planning. This book is intended for computer science and engineering students and researchers, medical professionals and anyone interested using DL techniques.

Deep Learning Approaches to Text Production

Автор: by Shashi Narayan, Claire Gardent
Название: Deep Learning Approaches to Text Production
ISBN: 1681737604 ISBN-13(EAN): 9781681737607
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 95170.00 T
Наличие на складе: Нет в наличии.
Описание: Text production has many applications. It is used, for instance, to generate dialogue turns from dialogue moves, verbalise the content of knowledge bases, or generate English sentences from rich linguistic representations, such as dependency trees or abstract meaning representations. Text production is also at work in text-to-text transformations such as sentence compression, sentence fusion, paraphrasing, sentence (or text) simplification, and text summarisation. This book offers an overview of the fundamentals of neural models for text production. In particular, we elaborate on three main aspects of neural approaches to text production: how sequential decoders learn to generate adequate text, how encoders learn to produce better input representations, and how neural generators account for task-specific objectives. Indeed, each text-production task raises a slightly different challenge (e.g, how to take the dialogue context into account when producing a dialogue turn, how to detect and merge relevant information when summarising a text, or how to produce a well-formed text that correctly captures the information contained in some input data in the case of data-to-text generation). We outline the constraints specific to some of these tasks and examine how existing neural models account for them. More generally, this book considers text-to-text, meaning-to-text, and data-to-text transformations. It aims to provide the audience with a basic knowledge of neural approaches to text production and a roadmap to get them started with the related work. The book is mainly targeted at researchers, graduate students, and industrials interested in text production from different forms of inputs.

Malware Analysis Using Artificial Intelligence and Deep Learning

Автор: Stamp Mark, Alazab Mamoun, Shalaginov Andrii
Название: Malware Analysis Using Artificial Intelligence and Deep Learning
ISBN: 3030625818 ISBN-13(EAN): 9783030625818
Издательство: Springer
Рейтинг:
Цена: 167700.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is focused on the use of deep learning (DL) and artificial intelligence (AI) as tools to advance the fields of malware detection and analysis.

Transformers for Natural Language Processing: Build innovative deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, RoBER

Автор: Rothman Denis
Название: Transformers for Natural Language Processing: Build innovative deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, RoBER
ISBN: 1800565798 ISBN-13(EAN): 9781800565791
Издательство: Неизвестно
Рейтинг:
Цена: 122600.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume reports on excavations in advance of the development of a site in Norton-on-Derwent, North Yorkshire close to the line of the main Roman road running from the crossing point of the River Derwent near Malton Roman fort to York. This site provided much additional information on aspects of the poorly understood `small town` of Delgovicia.

Granular video computing: with rough sets, deep learning and in iot

Автор: Chakraborty, Debarati B
Название: Granular video computing: with rough sets, deep learning and in iot
ISBN: 981122711X ISBN-13(EAN): 9789811227110
Издательство: World Scientific Publishing
Рейтинг:
Цена: 84480.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume links the concept of granular computing using deep learning and the Internet of Things to object tracking for video analysis. It describes how uncertainties, involved in the task of video processing, could be handled in rough set theoretic granular computing frameworks. Issues such as object tracking from videos in constrained situations, occlusion/overlapping handling, measuring of the reliability of tracking methods, object recognition and linguistic interpretation in video scenes, and event prediction from videos, are the addressed in this volume. The book also looks at ways to reduce data dependency in the context of unsupervised (without manual interaction/ labeled data/ prior information) training.This book may be used both as a textbook and reference book for graduate students and researchers in computer science, electrical engineering, system science, data science, and information technology, and is recommended for both students and practitioners working in computer vision, machine learning, video analytics, image analytics, artificial intelligence, system design, rough set theory, granular computing, and soft computing.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия