Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Predicting the Dynamics of Research Impact, Manolopoulos Yannis, Vergoulis Thanasis


Варианты приобретения
Цена: 158380.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 241 шт.  
При оформлении заказа до: 2025-08-18
Ориентировочная дата поставки: конец Сентября - начало Октября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Manolopoulos Yannis, Vergoulis Thanasis
Название:  Predicting the Dynamics of Research Impact
ISBN: 9783030866679
Издательство: Springer
Классификация:



ISBN-10: 303086667X
Обложка/Формат: Hardcover
Страницы: 312
Вес: 0.61 кг.
Дата издания: 24.10.2021
Язык: English
Размер: 23.39 x 15.60 x 1.91 cm
Ссылка на Издательство: Link
Поставляется из: Германии
Описание: This book provides its readers with an introduction to interesting prediction and science dynamics problems in the field of Science of Science.

Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data

Автор: Diane J. Cook,Narayanan C. Krishnan
Название: Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data
ISBN: 111889376X ISBN-13(EAN): 9781118893760
Издательство: Wiley
Рейтинг:
Цена: 104490.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Defines the notion of an activity model learned from sensor data and presents key algorithms that form the core of the field Activity Learning: Discovering, Recognizing and Predicting Human Behavior from Sensor Data provides an in-depth look at computational approaches to activity learning from sensor data.

Machine-learning Techniques in Economics

Автор: Atin Basuchoudhary; James T. Bang; Tinni Sen
Название: Machine-learning Techniques in Economics
ISBN: 3319690132 ISBN-13(EAN): 9783319690131
Издательство: Springer
Рейтинг:
Цена: 51230.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book develops a machine-learning framework for predicting economic growth. While machine learning itself is not a new idea, advances in computing technology combined with a dawning realization of its applicability to economic questions makes it a new tool for economists.

Information Systems Theory

Автор: Yogesh K. Dwivedi; Michael R. Wade; Scott L. Schne
Название: Information Systems Theory
ISBN: 1461429706 ISBN-13(EAN): 9781461429708
Издательство: Springer
Рейтинг:
Цена: 139750.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book details the many prominent theories, models and related research approaches of Information Systems (IS) research to provide a comprehensive understanding of the subject, making it a practical reference for practitioners and researchers.

Predicting structured data

Название: Predicting structured data
ISBN: 0262528045 ISBN-13(EAN): 9780262528047
Издательство: MIT Press
Рейтинг:
Цена: 57030.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

State-of-the-art algorithms and theory in a novel domain of machine learning, prediction when the output has structure.

Machine learning develops intelligent computer systems that are able to generalize from previously seen examples. A new domain of machine learning, in which the prediction must satisfy the additional constraints found in structured data, poses one of machine learning's greatest challenges: learning functional dependencies between arbitrary input and output domains. This volume presents and analyzes the state of the art in machine learning algorithms and theory in this novel field. The contributors discuss applications as diverse as machine translation, document markup, computational biology, and information extraction, among others, providing a timely overview of an exciting field.

Contributors
Yasemin Altun, Gokhan Bakir, Olivier Bousquet, Sumit Chopra, Corinna Cortes, Hal Daume III, Ofer Dekel, Zoubin Ghahramani, Raia Hadsell, Thomas Hofmann, Fu Jie Huang, Yann LeCun, Tobias Mann, Daniel Marcu, David McAllester, Mehryar Mohri, William Stafford Noble, Fernando Perez-Cruz, Massimiliano Pontil, Marc'Aurelio Ranzato, Juho Rousu, Craig Saunders, Bernhard Scholkopf, Matthias W. Seeger, Shai Shalev-Shwartz, John Shawe-Taylor, Yoram Singer, Alexander J. Smola, Sandor Szedmak, Ben Taskar, Ioannis Tsochantaridis, S.V.N Vishwanathan, Jason Weston


Predicting Information Retrieval Performance

Автор: Robert M. Losee
Название: Predicting Information Retrieval Performance
ISBN: 1681734729 ISBN-13(EAN): 9781681734729
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 41580.00 T
Наличие на складе: Невозможна поставка.
Описание: Information Retrieval performance measures are usually retrospective in nature, representing the effectiveness of an experimental process. However, in the sciences, phenomena may be predicted, given parameter values of the system. After developing a measure that can be applied retrospectively or can be predicted, performance of a system using a single term can be predicted given several different types of probabilistic distributions. Information Retrieval performance can be predicted with multiple terms, where statistical dependence between terms exists and is understood. These predictive models may be applied to realistic problems, and then the results may be used to validate the accuracy of the methods used. The application of metadata or index labels can be used to determine whether or not these features should be used in particular cases. Linguistic information, such as part-of-speech tag information, can increase the discrimination value of existing terminology and can be studied predictively.This work provides methods for measuring performance that may be used predictively. Means of predicting these performance measures are provided, both for the simple case of a single term in the query and for multiple terms. Methods of applying these formulae are also suggested.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия