Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

State-Of-The-Art Deep Learning Models in Tensorflow: Modern Machine Learning in the Google Colab Ecosystem, Paper David


Варианты приобретения
Цена: 69870.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 200 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Paper David
Название:  State-Of-The-Art Deep Learning Models in Tensorflow: Modern Machine Learning in the Google Colab Ecosystem
ISBN: 9781484273401
Издательство: Springer
Классификация:





ISBN-10: 1484273400
Обложка/Формат: Paperback
Страницы: 374
Вес: 0.69 кг.
Дата издания: 01.09.2021
Язык: English
Издание: 1st ed.
Иллюстрации: 1 illustrations, color; xi, 336 p. 1 illus. in color.; 1 illustrations, color; xi, 336 p. 1 illus. in color.
Размер: 25.40 x 17.78 x 2.08 cm
Читательская аудитория: Professional & vocational
Подзаголовок: Modern machine learning in the google colab ecosystem
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Intermediate-Advanced user level

Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems

Автор: Geron Aurelien
Название: Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems
ISBN: 1492032646 ISBN-13(EAN): 9781492032649
Издательство: Wiley
Рейтинг:
Цена: 63350.00 T
Наличие на складе: Поставка под заказ.
Описание:

Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data.

The updated edition of this practical book uses concrete examples, minimal theory, and three production-ready Python frameworks--scikit-learn, Keras, and TensorFlow--to help you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you've learned, all you need is programming experience to get started.


Tinyml: Machine Learning with Tensorflow on Arduino, and Ultra-Low Power Micro-Controllers

Автор: Warden P
Название: Tinyml: Machine Learning with Tensorflow on Arduino, and Ultra-Low Power Micro-Controllers
ISBN: 1492052043 ISBN-13(EAN): 9781492052043
Издательство: Wiley
Рейтинг:
Цена: 42230.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Neural networks are getting smaller. Much smaller. The OK Google team, for example, has run machine learning models that are just 14 kilobytes in size--small enough to work on the digital signal processor in an Android phone. With this practical book, you'll learn about TensorFlow Lite for Microcontrollers, a miniscule machine learning library that allows you to run machine learning algorithms on tiny hardware.

Authors Pete Warden and Daniel Situnayake explain how you can train models that are small enough to fit into any environment, including small embedded devices that can run for a year or more on a single coin cell battery. Ideal for software and hardware developers who want to build embedded devices using machine learning, this guide shows you how to create a TinyML project step-by-step. No machine learning or microcontroller experience is necessary.

  • Learn practical machine learning applications on embedded devices, including simple uses such as speech recognition and gesture detection
  • Train models such as speech, accelerometer, and image recognition, you can deploy on Arduino and other embedded platforms
  • Understand how to work with Arduino and ultralow-power microcontrollers
  • Use techniques for optimizing latency, energy usage, and model and binary size

Machine Learning for Economics and Finance in Tensorflow 2: Deep Learning Models for Research and Industry

Автор: Hull Isaiah
Название: Machine Learning for Economics and Finance in Tensorflow 2: Deep Learning Models for Research and Industry
ISBN: 1484263723 ISBN-13(EAN): 9781484263723
Издательство: Springer
Цена: 55890.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Chapter 1: TensorFlow 2.0

Chapter Goal: Introduce TensorFlow 2 and discuss preliminary material on conventions and practices specific to TensorFlow.

- Differences between TensorFlow iterations

- TensorFlow for economics and finance

- Introduction to tensors

- Review of linear algebra and calculus

- Loading data for use in TensorFlow

- Defining constants and variables

Chapter 2: Machine Learning and Economics

Chapter Goal: Provide a high-level overview of machine learning models and explain how they can be employed in economics and finance. Part of the chapter will review existing work in economics and speculate on future use-cases.

- Introduction to machine learning

- Machine learning for economics and finance

- Unsupervised machine learning

- Supervised machine learning

- Regularization

- Prediction

- Evaluation

Chapter 3: Regression

Chapter Goal: Explain how regression models are used primarily for prediction purposes in machine learning, rather than hypothesis testing, as is the case in economics. Introduce evaluation metrics and optimization routines used to solve regression models.

- Linear regression

- Partially-linear regression

- Non-linear regression

- Logistic regression

- Loss functions

- Evaluation metrics

- Optimizers

Chapter 4: Trees

Chapter Goal: Introduce tree-based models and the concept of ensembles.

- Decision trees

- Regression trees

- Random forests

- Model tuning

Chapter 5: Gradient Boosting

Chapter Goal: Introduce gradient boosting and discuss how it is applied, how models are tuned, and how to identify important features.

- Introduction to gradient boosting

- Boosting with regression models

- Boosting with trees

- Model tuning

- Feature importance

Chapter 6: Images

Chapter Goal: Introduce the high level Keras and Estimators APIs. Explain how these libraries can be used to perform image classification using a variety of deep learning models. Also, discuss the use of pretrained models and fine-tuning. Speculate on image classification uses in economics and finance.

- Keras

- Estimators

- Data preparation

- Deep neural networ

Machine Learning Using TensorFlow Cookbook: Over 60 recipes on machine learning using deep learning solutions from Kaggle Masters and Google Developer

Автор: Audevart Alexia, Banachewicz Konrad, Massaron Luca
Название: Machine Learning Using TensorFlow Cookbook: Over 60 recipes on machine learning using deep learning solutions from Kaggle Masters and Google Developer
ISBN: 1800208863 ISBN-13(EAN): 9781800208865
Издательство: Неизвестно
Рейтинг:
Цена: 47810.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is designed to guide you through TensorFlow 2 and how to use it effectively. Throughout the book, you will work through recipes and get hands-on experience to perform complex data computations, gain insights into your data, and more.

Tensorflow Deep Learning Projects

Автор: Boschetti Alberto, Massaron Luca, Thakur Abhishek
Название: Tensorflow Deep Learning Projects
ISBN: 1788398068 ISBN-13(EAN): 9781788398060
Издательство: Неизвестно
Цена: 53940.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is your guide to master deep learning with TensorFlow, with the help of 10 real-world projects. You will train high-performance models in TensorFlow to generate captions for images automatically, predict stocks` performance, create intelligent chatbots, perform large-scale text classification, develop recommendation systems, and more.

Transformers for Natural Language Processing: Build innovative deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, RoBER

Автор: Rothman Denis
Название: Transformers for Natural Language Processing: Build innovative deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, RoBER
ISBN: 1800565798 ISBN-13(EAN): 9781800565791
Издательство: Неизвестно
Рейтинг:
Цена: 122600.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume reports on excavations in advance of the development of a site in Norton-on-Derwent, North Yorkshire close to the line of the main Roman road running from the crossing point of the River Derwent near Malton Roman fort to York. This site provided much additional information on aspects of the poorly understood `small town` of Delgovicia.

AI for Healthcare with Keras and Tensorflow 2.0: Design, Develop, and Deploy Machine Learning Models Using Healthcare Data

Автор: Anshik
Название: AI for Healthcare with Keras and Tensorflow 2.0: Design, Develop, and Deploy Machine Learning Models Using Healthcare Data
ISBN: 1484270851 ISBN-13(EAN): 9781484270851
Издательство: Springer
Рейтинг:
Цена: 55890.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Intermediate-Advanced user level

Mastering Computer Vision with TensorFlow 2.x: Build advanced computer vision applications using machine learning and deep learning techniques

Автор: Kar Krishnendu
Название: Mastering Computer Vision with TensorFlow 2.x: Build advanced computer vision applications using machine learning and deep learning techniques
ISBN: 1838827064 ISBN-13(EAN): 9781838827069
Издательство: Неизвестно
Рейтинг:
Цена: 60070.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: You will learn the principles of computer vision and deep learning, and understand various models and architectures with their pros and cons. You will learn how to use TensorFlow 2.x to build your own neural network model and apply it to various computer vision tasks such as image acquiring, processing, and analyzing.

The TensorFlow Workshop: A hands-on guide to building deep learning models from scratch using real-world datasets

Автор: Moocarme Matthew, So Anthony, Maddalone Anthony
Название: The TensorFlow Workshop: A hands-on guide to building deep learning models from scratch using real-world datasets
ISBN: 1800205252 ISBN-13(EAN): 9781800205253
Издательство: Неизвестно
Рейтинг:
Цена: 49090.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This Workshop will teach you how to build deep learning models from scratch using real-world datasets with the TensorFlow framework. You will gain the knowledge you need to process a variety of data types, perform tensor computations, and understand the different layers in a deep learning model.

Building Machine Learning Pipelines: Automating Model Life Cycles with Tensorflow

Название: Building Machine Learning Pipelines: Automating Model Life Cycles with Tensorflow
ISBN: 1492053198 ISBN-13(EAN): 9781492053194
Издательство: Wiley
Рейтинг:
Цена: 67570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Companies are spending billions on machine learning projects, but it's money wasted if the models can't be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. You'll learn the techniques and tools that will cut deployment time from days to minutes, so that you can focus on developing new models rather than maintaining legacy systems.

Data scientists, machine learning engineers, and DevOps engineers will discover how to go beyond model development to successfully productize their data science projects, while managers will better understand the role they play in helping to accelerate these projects. The book also explores new approaches for integrating data privacy into machine learning pipelines.

  • Understand the machine learning management lifecycle
  • Implement data pipelines with Apache Airflow and Kubeflow Pipelines
  • Work with data using TensorFlow tools like ML Metadata, TensorFlow Data Validation, and TensorFlow Transform
  • Analyze models with TensorFlow Model Analysis and ship them with the TFX Model Pusher Component after the ModelValidator TFX Component confirmed that the analysis results are an improvement
  • Deploy models in a variety of environments with TensorFlow Serving, TensorFlow Lite, and TensorFlow.js
  • Learn methods for adding privacy, including differential privacy with TensorFlow Privacy and federated learning with TensorFlow Federated
  • Design model feedback loops to increase your data sets and learn when to update your machine learning models



Learning Tensorflow.Js: Machine Learning in JavaScript

Автор: Laborde Gant
Название: Learning Tensorflow.Js: Machine Learning in JavaScript
ISBN: 1492090794 ISBN-13(EAN): 9781492090793
Издательство: Wiley
Рейтинг:
Цена: 47510.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In this guide, author Gant Laborde--Google Developer Expert in machine learning and the web--provides a hands-on end-to-end approach to TensorFlow.js fundamentals for a broad technical audience that includes data scientists, engineers, web developers, students, and researchers.

Tensorflow machine learning cookbook

Автор: Mcclure, Nick
Название: Tensorflow machine learning cookbook
ISBN: 1786462168 ISBN-13(EAN): 9781786462169
Издательство: Неизвестно
Рейтинг:
Цена: 74780.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Explore machine learning concepts using the latest numerical computing library -- TensorFlow -- with the help of this comprehensive cookbook

Key Features

  • Your quick guide to implementing TensorFlow in your day-to-day machine learning activities
  • Learn advanced techniques that bring more accuracy and speed to machine learning
  • Upgrade your knowledge to the second generation of machine learning with this guide on TensorFlow

Book Description

TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and will let you dig deeper and gain more insights into your data than ever before. You'll work through recipes on training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and deep learning - each using Google's machine learning library TensorFlow.
This guide starts with the fundamentals of the TensorFlow library which includes variables, matrices, and various data sources. Moving ahead, you will get hands-on experience with Linear Regression techniques with TensorFlow. The next chapters cover important high-level concepts such as neural networks, CNN, RNN, and NLP.
Once you are familiar and comfortable with the TensorFlow ecosystem, the last chapter will show you how to take it to production.

What you will learn

  • Become familiar with the basics of the TensorFlow machine learning library
  • Get to know Linear Regression techniques with TensorFlow
  • Learn SVMs with hands-on recipes
  • Implement neural networks and improve predictions
  • Apply NLP and sentiment analysis to your data
  • Master CNN and RNN through practical recipes
  • Take TensorFlow into production

Who this book is for

This book is ideal for data scientists who are familiar with C++ or Python and perform machine learning activities on a day-to-day basis. Intermediate and advanced machine learning implementers who need a quick guide they can easily navigate will find it useful.



Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия