Beginning Azure Cognitive Services: Data-Driven Decision Making Through Artificial Intelligence, Moniz Alicia, Gordon Matt, Bergum Ida
Автор: MALLICK & BORAH Название: Emerging Trends and Applications in Cognitive Computing ISBN: 1522557938 ISBN-13(EAN): 9781522557937 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 179740.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Though an individual can process a limitless amount of information, the human brain can only comprehend a small amount of data at a time. Using technology can improve the process and comprehension of information, but the technology must learn to behave more like a human brain to employ concepts like memory, learning, visualization ability, and decision making.Emerging Trends and Applications in Cognitive Computing is a fundamental scholarly source that provides empirical studies and theoretical analysis to show how learning methods can solve important application problems throughout various industries and explain how machine learning research is conducted. Including innovative research on topics such as deep neural networks, cyber-physical systems, and pattern recognition, this collection of research will benefit individuals such as IT professionals, academicians, students, researchers, and managers.
Communication and network technology has witnessed recent rapid development and numerous information services and applications have been developed globally. These technologies have high impact on society and the way people are leading their lives. The advancement in technology has undoubtedly improved the quality of service and user experience yet a lot needs to be still done. Some areas that still need improvement include seamless wide-area coverage, high-capacity hot-spots, low-power massive-connections, low-latency and high-reliability and so on. Thus, it is highly desirable to develop smart technologies for communication to improve the overall services and management of wireless communication. Machine learning and cognitive computing have converged to give some groundbreaking solutions for smart machines. With these two technologies coming together, the machines can acquire the ability to reason similar to the human brain. The research area of machine learning and cognitive computing cover many fields like psychology, biology, signal processing, physics, information theory, mathematics, and statistics that can be used effectively for topology management. Therefore, the utilization of machine learning techniques like data analytics and cognitive power will lead to better performance of communication and wireless systems.
Автор: Hiranmay Ghosh Название: Computational Models for Cognitive Vision ISBN: 1119527864 ISBN-13(EAN): 9781119527862 Издательство: Wiley Рейтинг: Цена: 51690.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание:
Learn how to apply cognitive principles to the problems of computer vision
Computational Models for Cognitive Vision formulates the computational models for the cognitive principles found in biological vision, and applies those models to computer vision tasks. Such principles include perceptual grouping, attention, visual quality and aesthetics, knowledge-based interpretation and learning, to name a few. The author's ultimate goal is to provide a framework for creation of a machine vision system with the capability and versatility of the human vision.
Written by Dr. Hiranmay Ghosh, the book takes readers through the basic principles and the computational models for cognitive vision, Bayesian reasoning for perception and cognition, and other related topics, before establishing the relationship of cognitive vision with the multi-disciplinary field broadly referred to as "artificial intelligence". The principles are illustrated with diverse application examples in computer vision, such as computational photography, digital heritage and social robots. The author concludes with suggestions for future research and salient observations about the state of the field of cognitive vision.
Other topics covered in the book include:
- knowledge representation techniques
- evolution of cognitive architectures
- deep learning approaches for visual cognition
Undergraduate students, graduate students, engineers, and researchers interested in cognitive vision will consider this an indispensable and practical resource in the development and study of computer vision.
Автор: Karthikrajan Senthilnathan, Balamurugan Shanmugam, Dinesh Goyal, Iyswarya Annapoorani, Ravi Samikannu Название: Deep Learning Applications and Intelligent Decision Making in Engineering ISBN: 1799821099 ISBN-13(EAN): 9781799821090 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 166320.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Provides practical applications of deep learning to improve decision-making methods and construct smart environments. Highlighting topics such as smart transportation, e-commerce, and cyber physical systems, this book is designed for engineers, computer scientists, programmers, software engineers, researchers, academics, and students.
Автор: Kenji Suzuki; Yisong Chen Название: Artificial Intelligence in Decision Support Systems for Diagnosis in Medical Imaging ISBN: 3319688421 ISBN-13(EAN): 9783319688428 Издательство: Springer Рейтинг: Цена: 149060.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book offers the first comprehensive overview of artificial intelligence (AI) technologies in decision support systems for diagnosis based on medical images, presenting cutting-edge insights from thirteen leading research groups around the world. Medical imaging offers essential information on patients’ medical condition, and clues to causes of their symptoms and diseases. Modern imaging modalities, however, also produce a large number of images that physicians have to accurately interpret. This can lead to an “information overload” for physicians, and can complicate their decision-making. As such, intelligent decision support systems have become a vital element in medical-image-based diagnosis and treatment. Presenting extensive information on this growing field of AI, the book offers a valuable reference guide for professors, students, researchers and professionals who want to learn about the most recent developments and advances in the field.
Автор: Ariel Rosenfeld, Sarit Kraus Название: Predicting Human Decision-Making: From Prediction to Action ISBN: 1681732742 ISBN-13(EAN): 9781681732749 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 66530.00 T Наличие на складе: Невозможна поставка. Описание: Human decision-making often transcends our formal models of ""rationality."" Designing intelligent agents that interact proficiently with people necessitates the modeling of human behavior and the prediction of their decisions. In this book, we explore the task of automatically predicting human decision-making and its use in designing intelligent human-aware automated computer systems of varying natures—from purely conflicting interaction settings (e.g., security and games) to fully cooperative interaction settings (e.g., autonomous driving and personal robotic assistants). We explore the techniques, algorithms, and empirical methodologies for meeting the challenges that arise from the above tasks and illustrate major benefits from the use of these computational solutions in real-world application domains such as security, negotiations, argumentative interactions, voting systems, autonomous driving, and games. The book presents both the traditional and classical methods as well as the most recent and cutting edge advances, providing the reader with a panorama of the challenges and solutions in predicting human decision-making.
Автор: Xia Lirong Название: Learning and Decision-Making from Rank Data ISBN: 1681734400 ISBN-13(EAN): 9781681734408 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 61910.00 T Наличие на складе: Невозможна поставка. Описание: The ubiquitous challenge of learning and decision-making from rank data arises in situations where intelligent systems collect preference and behavior data from humans, learn from the data, and then use the data to help humans make efficient, effective, and timely decisions. Often, such data are represented by rankings. This book surveys some recent progress toward addressing the challenge from the considerations of statistics, computation, and socio-economics. We will cover classical statistical models for rank data, including random utility models, distance-based models, and mixture models. We will discuss and compare classical and state of-the-art algorithms, such as algorithms based on Minorize-Majorization (MM), Expectation-Maximization (EM), Generalized Method-of-Moments (GMM), rank breaking, and tensor decomposition. We will also introduce principled Bayesian preference elicitation frameworks for collecting rank data. Finally, we will examine socio-economic aspects of statistically desirable decision-making mechanisms, such as Bayesian estimators. This book can be useful in three ways: (1) for theoreticians in statistics and machine learning to better understand the considerations and caveats of learning from rank data, compared to learning from other types of data, especially cardinal data; (2) for practitioners to apply algorithms covered by the book for sampling, learning, and aggregation; and (3) as a textbook for graduate students or advanced undergraduate students to learn about the field. This book requires that the reader has basic knowledge in probability, statistics, and algorithms. Knowledge in social choice would also help but is not required.
Автор: Lorien Pratt Название: Link: How Decision Intelligence Connects Data, Actions, and Outcomes for a Better World ISBN: 1787696545 ISBN-13(EAN): 9781787696549 Издательство: Emerald Рейтинг: Цена: 25730.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Why aren`t the most powerful new technologies being used to solve the world`s most important problems: hunger, poverty, conflict, employment, disease? In Link, Dr. Lorien Pratt answers these questions by exploring the solution that is emerging worldwide to take Artificial Intelligence to the next level: Decision Intelligence.
Автор: Ariel Rosenfeld, Sarit Kraus Название: Predicting Human Decision-Making: From Prediction to Action ISBN: 1681732769 ISBN-13(EAN): 9781681732763 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 87780.00 T Наличие на складе: Невозможна поставка. Описание: Human decision-making often transcends our formal models of ""rationality."" Designing intelligent agents that interact proficiently with people necessitates the modeling of human behavior and the prediction of their decisions. In this book, we explore the task of automatically predicting human decision-making and its use in designing intelligent human-aware automated computer systems of varying natures—from purely conflicting interaction settings (e.g., security and games) to fully cooperative interaction settings (e.g., autonomous driving and personal robotic assistants). We explore the techniques, algorithms, and empirical methodologies for meeting the challenges that arise from the above tasks and illustrate major benefits from the use of these computational solutions in real-world application domains such as security, negotiations, argumentative interactions, voting systems, autonomous driving, and games. The book presents both the traditional and classical methods as well as the most recent and cutting edge advances, providing the reader with a panorama of the challenges and solutions in predicting human decision-making.
Автор: Xia Lirong Название: Learning and Decision-Making from Rank Data ISBN: 1681734427 ISBN-13(EAN): 9781681734422 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 82230.00 T Наличие на складе: Невозможна поставка. Описание: The ubiquitous challenge of learning and decision-making from rank data arises in situations where intelligent systems collect preference and behavior data from humans, learn from the data, and then use the data to help humans make efficient, effective, and timely decisions. Often, such data are represented by rankings. This book surveys some recent progress toward addressing the challenge from the considerations of statistics, computation, and socio-economics. We will cover classical statistical models for rank data, including random utility models, distance-based models, and mixture models. We will discuss and compare classical and state of-the-art algorithms, such as algorithms based on Minorize-Majorization (MM), Expectation-Maximization (EM), Generalized Method-of-Moments (GMM), rank breaking, and tensor decomposition. We will also introduce principled Bayesian preference elicitation frameworks for collecting rank data. Finally, we will examine socio-economic aspects of statistically desirable decision-making mechanisms, such as Bayesian estimators. This book can be useful in three ways: (1) for theoreticians in statistics and machine learning to better understand the considerations and caveats of learning from rank data, compared to learning from other types of data, especially cardinal data; (2) for practitioners to apply algorithms covered by the book for sampling, learning, and aggregation; and (3) as a textbook for graduate students or advanced undergraduate students to learn about the field. This book requires that the reader has basic knowledge in probability, statistics, and algorithms. Knowledge in social choice would also help but is not required.
Автор: Alex Lui, Anna Farzinder, Mingboo Gong Название: Transforming Healthcare with Big Data and AI ISBN: 1641138971 ISBN-13(EAN): 9781641138970 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 47130.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Healthcare and technology are at a convergence point where significant changes are poised to take place. The vast and complex requirements of medical record keeping, coupled with stringent patient privacy laws, create an incredibly unwieldy maze of health data needs. While the past decade has seen giant leaps in AI, machine learning, wearable technologies, and data mining capacities that have enabled quantities of data to be accumulated, processed, and shared around the globe. Transforming Healthcare with Big Data and AI examines the crossroads of these two fields and looks to the future of leveraging advanced technologies and developing data ecosystems to the healthcare field.
This book is the product of the Transforming Healthcare with Data conference, held at the University of Southern California. Many speakers and digital healthcare industry leaders contributed multidisciplinary expertise to chapters in this work. Authors’ backgrounds range from data scientists, healthcare experts, university professors, and digital healthcare entrepreneurs. If you have an understanding of data technologies and are interested in the future of Big Data and A.I. in healthcare, this book will provide a wealth of insights into the new landscape of healthcare.
Автор: Hristova Stefka, Hong Soonkwan, Slack Jennifer Daryl Название: Algorithmic Culture: How Big Data and Artificial Intelligence Are Transforming Everyday Life ISBN: 1793635730 ISBN-13(EAN): 9781793635730 Издательство: Rowman & Littlefield Publishers Рейтинг: Цена: 126720.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book explores the complex ways in which algorithms and big data are reshaping everyday culture, while at the same time perpetuating inequality and intersectional discrimination. It situates issues of humanity, identity, and culture in relation to free will, surveillance, capitalism, neoliberalism, consumerism, solipsism, and creativity.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz