Automated Design of Machine Learning and Search Algorithms, Pillay Nelishia, Qu Rong
Автор: David J. C. MacKay Название: Information Theory, Inference and Learning Algorithms ISBN: 0521642981 ISBN-13(EAN): 9780521642989 Издательство: Cambridge Academ Рейтинг: Цена: 60190.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This exciting and entertaining textbook is ideal for courses in information, communication and coding. It is an unparalleled entry point to these subjects for professionals working in areas as diverse as computational biology, data mining, financial engineering and machine learning.
Автор: Cormen, Thomas H., E Название: Introduction to algorithms 3 ed. ISBN: 0262033844 ISBN-13(EAN): 9780262033848 Издательство: MIT Press Рейтинг: Цена: 183920.00 T Наличие на складе: Нет в наличии. Описание: A new edition of the essential text and professional reference, with substantial new material on such topics as vEB trees, multithreaded algorithms, dynamic programming, and edge-base flow.
Автор: Zong Woo Geem Название: Harmony Search Algorithms for Structural Design Optimization ISBN: 3642260527 ISBN-13(EAN): 9783642260520 Издательство: Springer Цена: 158380.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Various structures, such as buildings, bridges, and paved roads play an important role in our lives. However, these construction projects require large expenditures. Designing infrastructure cost-efficiently while satisfying all necessary design constraints is one of the most important and difficult tasks for a structural engineer. Traditionally, mathematical gradient-based optimization techniques have been applied to these designs. However, these gradient-based methods are not suitable for discrete design variables such as factory-made cross sectional area of structural members. Recently, researchers have turned their interest to phenomenon-mimicking optimization techniques because these techniques have proved able to efficiently handle discrete design variables. One of these techniques is harmony search, an algorithm developed from musical improvisation that has been applied to various structural design problems and has demonstrated cost-savings. This book gathers all the latest developments relating to the application of the harmony search algorithm in the structural design field in order for readers to efficiently understand the full spectrum of the algorithm s potential and to easily apply the algorithm to their own structural problems. This book contains six chapters with the following subjects: standard harmony search algorithm and its applications by Lee; standard harmony search algorithm for steel frame design by Degertekin; adaptive harmony search algorithm and its applications by Saka and Hasancebi; harmony particle swarm algorithm and its applications by Li and Liu; hybrid algorithm of harmony search, particle swarm & ant colony for structural design by Kaveh and Talatahari; and parameter calibration of viscoelastic and damage functions by Mun and Geem."
Автор: Zong Woo Geem Название: Harmony Search Algorithms for Structural Design Optimization ISBN: 3642034497 ISBN-13(EAN): 9783642034497 Издательство: Springer Рейтинг: Цена: 158380.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Researchers have lately applied the metaheuristic algorithm Harmony search to handle discrete design variables for various structures such as buildings and bridges. This book gathers all the latest developments of Harmony search algorithm in structural design.
Get to grips with automated machine learning and adopt a hands-on approach to AutoML implementation and associated methodologies
Key Features:
Get up to speed with AutoML using OSS, Azure, AWS, GCP, or any platform of your choice
Eliminate mundane tasks in data engineering and reduce human errors in machine learning models
Find out how you can make machine learning accessible for all users to promote decentralized processes
Book Description:
Every machine learning engineer deals with systems that have hyperparameters, and the most basic task in automated machine learning (AutoML) is to automatically set these hyperparameters to optimize performance. The latest deep neural networks have a wide range of hyperparameters for their architecture, regularization, and optimization, which can be customized effectively to save time and effort.
This book reviews the underlying techniques of automated feature engineering, model and hyperparameter tuning, gradient-based approaches, and much more. You'll discover different ways of implementing these techniques in open source tools and then learn to use enterprise tools for implementing AutoML in three major cloud service providers: Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform. As you progress, you'll explore the features of cloud AutoML platforms by building machine learning models using AutoML. The book will also show you how to develop accurate models by automating time-consuming and repetitive tasks in the machine learning development lifecycle.
By the end of this machine learning book, you'll be able to build and deploy AutoML models that are not only accurate, but also increase productivity, allow interoperability, and minimize feature engineering tasks.
What You Will Learn:
Explore AutoML fundamentals, underlying methods, and techniques
Assess AutoML aspects such as algorithm selection, auto featurization, and hyperparameter tuning in an applied scenario
Find out the difference between cloud and operations support systems (OSS)
Implement AutoML in enterprise cloud to deploy ML models and pipelines
Build explainable AutoML pipelines with transparency
Understand automated feature engineering and time series forecasting
Automate data science modeling tasks to implement ML solutions easily and focus on more complex problems
Who this book is for:
Citizen data scientists, machine learning developers, artificial intelligence enthusiasts, or anyone looking to automatically build machine learning models using the features offered by open source tools, Microsoft Azure Machine Learning, AWS, and Google Cloud Platform will find this book useful. Beginner-level knowledge of building ML models is required to get the best out of this book. Prior experience in using Enterprise cloud is beneficial.
Автор: Tor Lattimore, Csaba Szepesvari Название: Bandit Algorithms ISBN: 1108486827 ISBN-13(EAN): 9781108486828 Издательство: Cambridge Academ Рейтинг: Цена: 46470.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Decision-making in the face of uncertainty is a challenge in machine learning, and the multi-armed bandit model is a common framework to address it. This comprehensive introduction is an excellent reference for established researchers and a resource for graduate students interested in exploring stochastic, adversarial and Bayesian frameworks.
Автор: Kumar, Anil , Kumar, A. Senthil , Upadhyay, Priy Название: Fuzzy Machine Learning Algorithms for Remote Sensing Image Classification ISBN: 036735571X ISBN-13(EAN): 9780367355715 Издательство: Taylor&Francis Рейтинг: Цена: 100030.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book covers the state of art image classification methods for discrimination of earth objects from remote sensing satellite data with an emphasis on fuzzy based learning methods including applications for preparing land cover classification outputs from actual satellite data. All algorithms are supported by in-house developed tool as SMIC.
Автор: Das, S.K., Das, S.P., Dey, N., Hassanien, A.-E. Название: Machine Learning Algorithms for Industrial Applications ISBN: 3030506401 ISBN-13(EAN): 9783030506407 Издательство: Springer Рейтинг: Цена: 139750.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book explores several problems and their solutions regarding data analysis and prediction for industrial applications. Machine learning is a prominent topic in modern industries: its influence can be felt in many aspects of everyday life, as the world rapidly embraces big data and data analytics.
Автор: Emmanouil Amolochitis Название: Algorithms and Applications for Academic Search, Recommendation and Quantitative Association Rule Mining ISBN: 8793609647 ISBN-13(EAN): 9788793609648 Издательство: Taylor&Francis Рейтинг: Цена: 78590.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Algorithms and Applications for Academic Search, Recommendation and Quantitative Association Rule Mining presents novel algorithms for academic search, recommendation and association rule mining that have been developed and optimized for different commercial as well as academic purpose systems. Along with the design and implementation of algorithms, a major part of the work presented in the book involves the development of new systems both for commercial as well as for academic use. In the first part of the book the author introduces a novel hierarchical heuristic scheme for re-ranking academic publications retrieved from standard digital libraries. The scheme is based on the hierarchical combination of a custom implementation of the term frequency heuristic, a time-depreciated citation score and a graph-theoretic computed score that relates the paper’s index terms with each other. In order to evaluate the performance of the introduced algorithms, a meta-search engine has been designed and developed that submits user queries to standard digital repositories of academic publications and re-ranks the top-n results using the introduced hierarchical heuristic scheme. In the second part of the book the design of novel recommendation algorithms with application in different types of e-commerce systems are described. The newly introduced algorithms are a part of a developed Movie Recommendation system, the first such system to be commercially deployed in Greece by a major Triple Play services provider. The initial version of the system uses a novel hybrid recommender (user, item and content based) and provides daily recommendations to all active subscribers of the provider (currently more than 30,000). The recommenders that we are presenting are hybrid by nature, using an ensemble configuration of different content, user as well as item-based recommenders in order to provide more accurate recommendation results.The final part of the book presents the design of a quantitative association rule mining algorithm. Quantitative association rules refer to a special type of association rules of the form that antecedent implies consequent consisting of a set of numerical or quantitative attributes. The introduced mining algorithm processes a specific number of user histories in order to generate a set of association rules with a minimally required support and confidence value. The generated rules show strong relationships that exist between the consequent and the antecedent of each rule, representing different items that have been consumed at specific price levels. This research book will be of appeal to researchers, graduate students, professionals, engineers and computer programmers.
Автор: Mukunthu Deepak, Shah Parashar, Tok Wee Hyong Название: Practical Automated Machine Learning on Azure ISBN: 149205559X ISBN-13(EAN): 9781492055594 Издательство: Wiley Рейтинг: Цена: 50680.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Develop smart applications without spending days and weeks building machine-learning models. With this practical book, you`ll learn how to apply Automated Machine Learning, a process that uses machine learning to help people build machine learning models.
Автор: Haowen Yan Название: Description Approaches and Automated Generalization Algorithms for Groups of Map Objects ISBN: 9811336776 ISBN-13(EAN): 9789811336775 Издательство: Springer Рейтинг: Цена: 139750.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book focuses on the generalization of map features, providing descriptions and classifying groups of map objects into six categories: point clusters, groups of contours, road networks, river networks, continuous areal features and discrete areal features. Discussing the methods and algorithms in map generalization in equal measure, it also describes the approaches for describing map features. The book is a valuable reference for graduates and researchers who are interested in cartography and geographic information science/systems, especially those in automated map generalization and spatial databases construction.
Автор: Kousalya G., Balakrishnan P., Pethuru Raj C. Название: Automated Workflow Scheduling in Self-Adaptive Clouds: Concepts, Algorithms and Methods ISBN: 331986050X ISBN-13(EAN): 9783319860503 Издательство: Springer Рейтинг: Цена: 41920.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Stepping into the Digital Intelligence Era
Demystifying the Traits of Software-Defined Cloud Environments (SDCEs)
Workflow Management Systems
Workflow Scheduling Algorithms and Approaches
Workflow Modeling and Simulation Techniques
Execution of Workflow Scheduling in Cloud Middleware
Workflow Predictions through Operational Analytics and Machine Learning
Workflow Integration and Orchestration - Opportunities and the Challenges
Workload Consolidation through Automated Workload Scheduling
Automated Optimization Methods for Workflow Execution
Hybrid IT: Characteristics and Capabilities
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz