Transfer learning through embedding spaces, Rostami, Mohammad
Автор: Delipetrev, Blagoj Название: Nested algorithms for optimal reservoir operation and their embedding in a decision support platform ISBN: 113837346X ISBN-13(EAN): 9781138373464 Издательство: Taylor&Francis Рейтинг: Цена: 163330.00 T Наличие на складе: Невозможна поставка. Описание: The thesis presents novel algorithms for optimal reservoir operation, named nested DP (nDP), nested SDP (nSDP), nested reinforcement learning (nRL) and their multi-objective (MO) variants, correspondingly MOnDP, MOnSDP and MOnRL. The idea is to include a nested optimization algorithm into each state transition, which reduces the initial problem dimension and alleviates the curse of dimensionality. These algorithms can solve multi-objective optimization problems, without significantly increasing the algorithm complexity or the computational expenses.Nested optimization algorithms are embedded in a cloud application platform for water resources modeling and optimization. The platform is available 24/7, accessible from everywhere, scalable, distributed, interoperable, and it creates a real-time multiuser collaboration platform.
Автор: Yang Cheng, Liu Zhiyuan, Tu Cunchao Название: Network Embedding: Theories, Methods, and Applications ISBN: 1636390463 ISBN-13(EAN): 9781636390468 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 106260.00 T Наличие на складе: Нет в наличии. Описание:
Many machine learning algorithms require real-valued feature vectors of data instances as inputs. By projecting data into vector spaces, representation learning techniques have achieved promising performance in many areas such as computer vision and natural language processing. There is also a need to learn representations for discrete relational data, namely networks or graphs. Network Embedding (NE) aims at learning vector representations for each node or vertex in a network to encode the topologic structure. Due to its convincing performance and efficiency, NE has been widely applied in many network applications such as node classification and link prediction.
This book provides a comprehensive introduction to the basic concepts, models, and applications of network representation learning (NRL). The book starts with an introduction to the background and rising of network embeddings as a general overview for readers. Then it introduces the development of NE techniques by presenting several representative methods on general graphs, as well as a unified NE framework based on matrix factorization. Afterward, it presents the variants of NE with additional information: NE for graphs with node attributes/contents/labels; and the variants with different characteristics: NE for community-structured/large-scale/heterogeneous graphs. Further, the book introduces different applications of NE such as recommendation and information diffusion prediction. Finally, the book concludes the methods and applications and looks forward to the future directions.
Автор: Yun Fu; Yunqian Ma Название: Graph Embedding for Pattern Analysis ISBN: 1489990623 ISBN-13(EAN): 9781489990624 Издательство: Springer Рейтинг: Цена: 113180.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book presents advances in graph embedding theories, such as nonlinear manifold graph, linearization method, graph based subspace analysis, L1 graph, hypergraph, undirected graph and graph in vector spaces, and describes their real-world applications.
Автор: Muandet, Krikamol Fukumizu, Kenji Sriperumbudur, Bharath Scholkopf, Bernhard Название: Kernel mean embedding of distributions: ISBN: 1680832883 ISBN-13(EAN): 9781680832884 Издательство: Неизвестно Рейтинг: Цена: 91040.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This monograph provides a comprehensive review of kernel mean embeddings of distributions and, in the course of doing so, discusses some challenging issues that could potentially lead to new research directions. The targeted audience includes graduate students and researchers in machine learning and statistics who are interested in the theory and applications of kernel mean embeddings.
Автор: Yang Cheng, Liu Zhiyuan, Tu Cunchao Название: Network Embedding: Theories, Methods, and Applications ISBN: 1636390447 ISBN-13(EAN): 9781636390444 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 85010.00 T Наличие на складе: Нет в наличии. Описание:
Many machine learning algorithms require real-valued feature vectors of data instances as inputs. By projecting data into vector spaces, representation learning techniques have achieved promising performance in many areas such as computer vision and natural language processing. There is also a need to learn representations for discrete relational data, namely networks or graphs. Network Embedding (NE) aims at learning vector representations for each node or vertex in a network to encode the topologic structure. Due to its convincing performance and efficiency, NE has been widely applied in many network applications such as node classification and link prediction.
This book provides a comprehensive introduction to the basic concepts, models, and applications of network representation learning (NRL). The book starts with an introduction to the background and rising of network embeddings as a general overview for readers. Then it introduces the development of NE techniques by presenting several representative methods on general graphs, as well as a unified NE framework based on matrix factorization. Afterward, it presents the variants of NE with additional information: NE for graphs with node attributes/contents/labels; and the variants with different characteristics: NE for community-structured/large-scale/heterogeneous graphs. Further, the book introduces different applications of NE such as recommendation and information diffusion prediction. Finally, the book concludes the methods and applications and looks forward to the future directions.
Автор: Van Rossum Guido, Python Development Team Название: Extending and Embedding Python: Release 3.6.4 ISBN: 1680921649 ISBN-13(EAN): 9781680921649 Издательство: Неизвестно Рейтинг: Цена: 14330.00 T Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Sogaard Anders, Vulic Ivan, Ruder Sebastian Название: Cross-Lingual Word Embeddings ISBN: 1681730634 ISBN-13(EAN): 9781681730639 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 61910.00 T Наличие на складе: Невозможна поставка. Описание:
The majority of natural language processing (NLP) is English language processing, and while there is good language technology support for (standard varieties of) English, support for Albanian, Burmese, or Cebuano-and most other languages-remains limited.
Being able to bridge this digital divide is important for scientific and democratic reasons but also represents an enormous growth potential. A key challenge for this to happen is learning to align basic meaning-bearing units of different languages.
In this book, the authors survey and discuss recent and historical work on supervised and unsupervised learning of such alignments. Specifically, the book focuses on so-called cross-lingual word embeddings. The survey is intended to be systematic, using consistent notation and putting the available methods on comparable form, making it easy to compare wildly different approaches. In so doing, the authors establish previously unreported relations between these methods and are able to present a fast-growing literature in a very compact way. Furthermore, the authors discuss how best to evaluate cross-lingual word embedding methods and survey the resources available for students and researchers interested in this topic.
Автор: Sogaard Anders, Vulic Ivan, Ruder Sebastian Название: Cross-Lingual Word Embeddings ISBN: 1681735725 ISBN-13(EAN): 9781681735726 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 82230.00 T Наличие на складе: Невозможна поставка. Описание:
The majority of natural language processing (NLP) is English language processing, and while there is good language technology support for (standard varieties of) English, support for Albanian, Burmese, or Cebuano-and most other languages-remains limited.
Being able to bridge this digital divide is important for scientific and democratic reasons but also represents an enormous growth potential. A key challenge for this to happen is learning to align basic meaning-bearing units of different languages.
In this book, the authors survey and discuss recent and historical work on supervised and unsupervised learning of such alignments. Specifically, the book focuses on so-called cross-lingual word embeddings. The survey is intended to be systematic, using consistent notation and putting the available methods on comparable form, making it easy to compare wildly different approaches. In so doing, the authors establish previously unreported relations between these methods and are able to present a fast-growing literature in a very compact way. Furthermore, the authors discuss how best to evaluate cross-lingual word embedding methods and survey the resources available for students and researchers interested in this topic.
Автор: Robert J. Howlett Название: Innovation through Knowledge Transfer ISBN: 3642264107 ISBN-13(EAN): 9783642264108 Издательство: Springer Рейтинг: Цена: 315850.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Constitutes International Conference on `Innovation through Knowledge Transfer: Research with Impact`, InnovationKT`09, held in Kingston, London, UK, provided a rare and welcome opportunity to share some of the successes of knowledge transfer.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz