Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Java: Data Science Made Easy, Reese Richard M., Reese Jennifer L., Grigorev Alexey


Варианты приобретения
Цена: 104210.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 205 шт.  
При оформлении заказа до: 2025-07-23
Ориентировочная дата поставки: конец Сентября - начало Октября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Reese Richard M., Reese Jennifer L., Grigorev Alexey
Название:  Java: Data Science Made Easy
ISBN: 9781788475655
Издательство: Packt Publishing
Классификация:
ISBN-10: 1788475658
Обложка/Формат: Paperback
Страницы: 734
Вес: 1.24 кг.
Дата издания: 12.07.2017
Язык: English
Размер: 23.50 x 19.05 x 3.73 cm
Читательская аудитория: General (us: trade)
Рейтинг:
Поставляется из: США

Mastering Java for Data Science

Автор: Grigorev Alexey
Название: Mastering Java for Data Science
ISBN: 1782174273 ISBN-13(EAN): 9781782174271
Издательство: Неизвестно
Рейтинг:
Цена: 62820.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Contains the proceedings of the 2015 Clifford Lectures on Algebraic Groups, held March 2015. The six articles cover an enhanced exposition of the classical results of Chevalley and Rosenlicht on the structure of algebraic groups; an enhanced survey of the recently developed theory of pseudo-reductive groups; and an exposition of the recently developed operational $K$-theory for singular varieties.

Machine Learning Bookcamp: Build a Portfolio of Real-Life Projects

Автор: Grigorev Alexey
Название: Machine Learning Bookcamp: Build a Portfolio of Real-Life Projects
ISBN: 1617296813 ISBN-13(EAN): 9781617296819
Издательство: Неизвестно
Рейтинг:
Цена: 52790.00 T
Наличие на складе: Невозможна поставка.
Описание: Time to flex your machine learning muscles! Take on the carefully designed challenges of the Machine Learning Bookcamp and master essential ML techniques through practical application.

Summary
In Machine Learning Bookcamp you will:

Collect and clean data for training models
Use popular Python tools, including NumPy, Scikit-Learn, and TensorFlow
Apply ML to complex datasets with images
Deploy ML models to a production-ready environment

The only way to learn is to practice! In Machine Learning Bookcamp, you'll create and deploy Python-based machine learning models for a variety of increasingly challenging projects. Taking you from the basics of machine learning to complex applications such as image analysis, each new project builds on what you've learned in previous chapters. You'll build a portfolio of business-relevant machine learning projects that hiring managers will be excited to see.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Master key machine learning concepts as you build actual projects! Machine learning is what you need for analyzing customer behavior, predicting price trends, evaluating risk, and much more. To master ML, you need great examples, clear explanations, and lots of practice. This book delivers all three!

About the book
Machine Learning Bookcamp presents realistic, practical machine learning scenarios, along with crystal-clear coverage of key concepts. In it, you'll complete engaging projects, such as creating a car price predictor using linear regression and deploying a churn prediction service. You'll go beyond the algorithms and explore important techniques like deploying ML applications on serverless systems and serving models with Kubernetes and Kubeflow. Dig in, get your hands dirty, and have fun building your ML skills!

What's inside

Collect and clean data for training models
Use popular Python tools, including NumPy, Scikit-Learn, and TensorFlow
Deploy ML models to a production-ready environment

About the reader
Python programming skills assumed. No previous machine learning knowledge is required.

About the author
Alexey Grigorev is a principal data scientist at OLX Group. He runs DataTalks.Club, a community of people who love data.

Table of Contents

1 Introduction to machine learning
2 Machine learning for regression
3 Machine learning for classification
4 Evaluation metrics for classification
5 Deploying machine learning models
6 Decision trees and ensemble learning
7 Neural networks and deep learning
8 Serverless deep learning
9 Serving models with Kubernetes and Kubeflow


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия