Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Multiple Instance Learning: Foundations and Algorithms, Herrera Francisco, Ventura Sebastiбn, Bello Rafael


Варианты приобретения
Цена: 93160.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 172 шт.  
При оформлении заказа до: 2025-12-15
Ориентировочная дата поставки: Январь
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Herrera Francisco, Ventura Sebastiбn, Bello Rafael
Название:  Multiple Instance Learning: Foundations and Algorithms
ISBN: 9783319838151
Издательство: Springer
Классификация:


ISBN-10: 3319838156
Обложка/Формат: Paperback
Страницы: 233
Вес: 0.35 кг.
Дата издания: 29.06.2018
Язык: English
Издание: Softcover reprint of
Иллюстрации: 40 illustrations, color; 6 illustrations, black and white; xi, 233 p. 46 illus., 40 illus. in color.
Размер: 23.39 x 15.60 x 1.32 cm
Читательская аудитория: General (us: trade)
Подзаголовок: Foundations and algorithms
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book provides a general overview of multiple instance learning (MIL), defining the framework and covering the central paradigms.

Concurrent Programming: Algorithms, Principles, and Foundations

Автор: Michel Raynal
Название: Concurrent Programming: Algorithms, Principles, and Foundations
ISBN: 3642446159 ISBN-13(EAN): 9783642446153
Издательство: Springer
Рейтинг:
Цена: 60550.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book explains synchronization and the implementation of concurrent objects, presenting synchronization algorithms while also introducing the theory that underlies the implementation of concurrent objects in the presence of asynchrony and process crashes.

Foundations of algorithms

Автор: Neapolitan, Richard E. Naimipour, Kumarss
Название: Foundations of algorithms
ISBN: 1284049191 ISBN-13(EAN): 9781284049190
Издательство: Jones & Bartlett
Рейтинг:
Цена: 94320.00 T
Наличие на складе: Невозможна поставка.
Описание: Data Structures & Theory of Computation

Boosting: Foundations and Algorithms

Автор: Schapire Robert E., Freund Yoav
Название: Boosting: Foundations and Algorithms
ISBN: 0262017180 ISBN-13(EAN): 9780262017183
Издательство: MIT Press
Рейтинг:
Цена: 26910.00 T
Наличие на складе: Нет в наличии.
Описание:

Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate "rules of thumb." A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical.

This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. The book begins with a general introduction to machine learning algorithms and their analysis; then explores the core theory of boosting, especially its ability to generalize; examines some of the myriad other theoretical viewpoints that help to explain and understand boosting; provides practical extensions of boosting for more complex learning problems; and finally presents a number of advanced theoretical topics. Numerous applications and practical illustrations are offered throughout.

Boosting: Foundations and Algorithms

Автор: Schapire Robert E., Freund Yoav
Название: Boosting: Foundations and Algorithms
ISBN: 0262526034 ISBN-13(EAN): 9780262526036
Издательство: MIT Press
Рейтинг:
Цена: 45150.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

An accessible introduction and essential reference for an approach to machine learning that creates highly accurate prediction rules by combining many weak and inaccurate ones.

Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate "rules of thumb." A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical.

This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well.

The book begins with a general introduction to machine learning algorithms and their analysis; then explores the core theory of boosting, especially its ability to generalize; examines some of the myriad other theoretical viewpoints that help to explain and understand boosting; provides practical extensions of boosting for more complex learning problems; and finally presents a number of advanced theoretical topics. Numerous applications and practical illustrations are offered throughout.


Mathematical Foundations of Nature-Inspired Algorithms

Автор: Xin-She Yang; Xing-Shi He
Название: Mathematical Foundations of Nature-Inspired Algorithms
ISBN: 3030169359 ISBN-13(EAN): 9783030169350
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents a systematic approach to analyze nature-inspired algorithms. Beginning with an introduction to optimization methods and algorithms, this book moves on to provide a unified framework of mathematical analysis for convergence and stability. Specific nature-inspired algorithms include: swarm intelligence, ant colony optimization, particle swarm optimization, bee-inspired algorithms, bat algorithm, firefly algorithm, and cuckoo search. Algorithms are analyzed from a wide spectrum of theories and frameworks to offer insight to the main characteristics of algorithms and understand how and why they work for solving optimization problems. In-depth mathematical analyses are carried out for different perspectives, including complexity theory, fixed point theory, dynamical systems, self-organization, Bayesian framework, Markov chain framework, filter theory, statistical learning, and statistical measures. Students and researchers in optimization, operations research, artificial intelligence, data mining, machine learning, computer science, and management sciences will see the pros and cons of a variety of algorithms through detailed examples and a comparison of algorithms.

Algorithms and Data Structures: Foundations and Probabilistic Methods for Design and Analysis

Автор: Knebl Helmut
Название: Algorithms and Data Structures: Foundations and Probabilistic Methods for Design and Analysis
ISBN: 3030597571 ISBN-13(EAN): 9783030597573
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: To distinguish this textbook from others, the author considers probabilistic methods as being fundamental for the construction of simple and efficient algorithms, and in each chapter at least one problem is solved using a randomized algorithm.

Stochastic Algorithms: Foundations and Applications

Автор: Osamu Watanabe; Thomas Zeugmann
Название: Stochastic Algorithms: Foundations and Applications
ISBN: 3642049435 ISBN-13(EAN): 9783642049439
Издательство: Springer
Рейтинг:
Цена: 65210.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the refereed proceedings of the 5th International Symposium on Stochastic Algorithms, Foundations and Applications, SAGA 2009, held in Sapporo, Japan, in October 2009. The 15 revised full papers presented together with 2 invited papers were carefully reviewed and selected from 22 submissions.

Transactional Memory. Foundations, Algorithms, Tools, and Applications

Автор: Rachid Guerraoui; Paolo Romano
Название: Transactional Memory. Foundations, Algorithms, Tools, and Applications
ISBN: 3319147196 ISBN-13(EAN): 9783319147192
Издательство: Springer
Рейтинг:
Цена: 59630.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Design and implementation of TM systems, including their theoretical underpinnings and algorithmic foundations.- Programming language integration and verification tools.- Hardware supports.- Distributed TM systems.- Self-tuning mechanisms.- Lessons learnt from building complex TM-based applications.

Image Texture Analysis: Foundations, Models and Algorithms

Автор: Hung Chih-Cheng, Song Enmin, Lan Yihua
Название: Image Texture Analysis: Foundations, Models and Algorithms
ISBN: 3030137759 ISBN-13(EAN): 9783030137755
Издательство: Springer
Рейтинг:
Цена: 43780.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This useful textbook/reference presents an accessible primer on the fundamentals of image texture analysis, as well as an introduction to the K-views model for extracting and classifying image textures. describes the basics of image texture, texture features, and image texture classification and segmentation;

Multiple Instance Learning

Автор: Francisco Herrera; Sebasti?n Ventura; Rafael Bello
Название: Multiple Instance Learning
ISBN: 3319477587 ISBN-13(EAN): 9783319477589
Издательство: Springer
Рейтинг:
Цена: 107130.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

This book provides a general overview of multiple instance learning (MIL), defining the framework and covering the central paradigms. The authors discuss the most important algorithms for MIL such as classification, regression and clustering. With a focus on classification, a taxonomy is set and the most relevant proposals are specified. Efficient algorithms are developed to discover relevant information when working with uncertainty. Key representative applications are included.
This book carries out a study of the key related fields of distance metrics and alternative hypothesis. Chapters examine new and developing aspects of MIL such as data reduction for multi-instance problems and imbalanced MIL data. Class imbalance for multi-instance problems is defined at the bag level, a type of representation that utilizes ambiguity due to the fact that bag labels are available, but the labels of the individual instances are not defined.
Additionally, multiple instance multiple label learning is explored. This learning framework introduces flexibility and ambiguity in the object representation providing a natural formulation for representing complicated objects. Thus, an object is represented by a bag of instances and is allowed to have associated multiple class labels simultaneously.
This book is suitable for developers and engineers working to apply MIL techniques to solve a variety of real-world problems. It is also useful for researchers or students seeking a thorough overview of MIL literature, methods, and tools.

Instance-Specific Algorithm Configuration

Автор: Yuri Malitsky
Название: Instance-Specific Algorithm Configuration
ISBN: 3319381237 ISBN-13(EAN): 9783319381237
Издательство: Springer
Рейтинг:
Цена: 65210.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents a modular and expandable technique in the rapidly emerging research area of automatic configuration and selection of the best algorithm for the instance at hand.

Instance Selection and Construction for Data Mining

Автор: Huan Liu; Hiroshi Motoda
Название: Instance Selection and Construction for Data Mining
ISBN: 1441948619 ISBN-13(EAN): 9781441948618
Издательство: Springer
Рейтинг:
Цена: 181630.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия