Head and Neck Tumor Segmentation: First Challenge, Hecktor 2020, Held in Conjunction with Miccai 2020, Lima, Peru, October 4, 2020, Proceedings, Andrearczyk Vincent, Oreiller Valentin, Depeursinge Adrien
Автор: Zhuang Xiahai, Li Lei Название: Myocardial Pathology Segmentation Combining Multi-Sequence Cardiac Magnetic Resonance Images: First Challenge, Myops 2020, Held in Conjunction with Mi ISBN: 3030656500 ISBN-13(EAN): 9783030656508 Издательство: Springer Рейтинг: Цена: 46570.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book constitutes the First Myocardial Pathology Segmentation Combining Multi-Sequence CMR Challenge, MyoPS 2020, which was held in conjunction with the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020.
Автор: Li Jianning, Egger Jan Название: Towards the Automatization of Cranial Implant Design in Cranioplasty: First Challenge, Autoimplant 2020, Held in Conjunction with Miccai 2020, Lima, P ISBN: 3030643263 ISBN-13(EAN): 9783030643263 Издательство: Springer Цена: 46570.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book constitutes the First Automatization of Cranial Implant Design in Cranioplasty Challenge, AutoImplant 2020, which was held in conjunction with the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020.
Автор: Shusharina Nadya, Heinrich Mattias P., Huang Ruobing Название: Segmentation, Classification, and Registration of Multi-Modality Medical Imaging Data: Miccai 2020 Challenges, ABCs 2020, L2r 2020, Tn-Scui 2020, Held ISBN: 3030718263 ISBN-13(EAN): 9783030718268 Издательство: Springer Цена: 46570.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: ABCs - Anatomical Brain Barriers to Cancer Spread: Segmentation from CT and MR Images.- Cross-modality Brain Structures Image Segmentation for the Radiotherapy Target Definition and Plan Optimization.- Domain Knowledge Driven Multi-modal Segmentation of Anatomical Brain Barriers to Cancer Spread.- Ensembled ResUnet for Anatomical Brain Barriers Segmentation.- An Enhanced Coarse-to-_ne Framework for the segmentation of clinical target volume.- Automatic Segmentation of brain structures for treatment planning optimization and target volume definition.- A Bi-Directional, Multi-Modality Framework for Segmentation of Brain Structures.- L2R - Learn2Reg: Multitask and Multimodal 3D Medical Image Registration.- Large Deformation Image Registration with Anatomy-aware Laplacian Pyramid Networks.- Discrete Unsupervised 3D Registration Methods for the Learn2Reg Challenge.- Variable Fraunhofer MEVIS RegLib comprehensively applied to Learn2Reg Challenge.- Learning a deformable registration pyramid.- Deep learning based registration using spatial gradients and noisy segmentation labels.- Multi-step, Learning-based, Semi-supervised Image Registration Algorithm.- Using Elastix to register inhale/exhale intrasubject thorax CT: a unsupervised baseline to the task 2 of the Learn2Reg challenge.- TN-SCUI - Thyroid Nodule Segmentation and Classification in Ultrasound Images.- Cascade Unet and CH-Unet for thyroid nodule segmenation and benign and malignant classification.- Identifying Thyroid Nodules in Ultrasound Images through Segmentation-guided Discriminative Localization.- Cascaded Networks for Thyroid Nodule Diagnosis from Ultrasound Images.- Automatic Segmentation and Classification of Thyroid Nodules in Ultrasound Images with Convolutional Neural Networks.- LRTHR-Net: A Low-Resolution-to-High-Resolution Framework to Iteratively Refine the Segmentation of Thyroid Nodule in Ultrasound Images.- Coarse to Fine Ensemble Network for Thyroid Nodule Segmentation.
Автор: Fu Huazhu, Garvin Mona K., Macgillivray Tom Название: Ophthalmic Medical Image Analysis: 7th International Workshop, Omia 2020, Held in Conjunction with Miccai 2020, Lima, Peru, October 8, 2020, Proceedin ISBN: 3030634183 ISBN-13(EAN): 9783030634186 Издательство: Springer Цена: 46570.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book constitutes the refereed proceedings of the 6th International Workshop on Ophthalmic Medical Image Analysis, OMIA 2020, held in conjunction with the 23rd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020.
Автор: Reuter Martin, Wachinger Christian, Lombaert Hervй Название: Shape in Medical Imaging: International Workshop, Shapemi 2020, Held in Conjunction with Miccai 2020, Lima, Peru, October 4, 2020, Proceedings ISBN: 3030610551 ISBN-13(EAN): 9783030610555 Издательство: Springer Цена: 46570.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book constitutes the proceedings of the International Workshop on Shape in Medical Imaging, ShapeMI 2020, which was held in conjunction with the 23rd International Conference on Medical Image Computing and Computer Assistend Intervention, MICCAI 2020, in October 2020.
Multi-cavity Heart Segmentation in Non-contrast Non-ECG Gated CT Scans with F-CNN.- 3D Deep Convolutional Neural Network-based Ventilated Lung Segmentation using Multi-nuclear Hyperpolarized Gas MRI.- Lung Cancer Tumor Region Segmentation Using Recurrent 3D-DenseUNet.- 3D Probabilistic Segmentation and Volumetry from 2D Projection Images.- CovidDiagnosis: Deep Diagnosis of Covid-19 Patients using Chest X-rays.- Can We Trust Deep Learning Based Diagnosis? The Impact of Domain Shift in Chest Radiograph Classification.- A Weakly Supervised Deep Learning Framework for COVID-19 CT Detection and Analysis.- Deep Reinforcement Learning for Localization of the Aortic Annulus in Patients with Aortic Dissection.- Functional-Consistent CycleGAN for CT to Iodine Perfusion Map Translation.- MRI to CTA Translation for Pulmonary Artery Evaluation using CycleGANs Trained with Unpaired Data.- Semi-supervised Virtual Regression of Aortic Dissections Using 3D Generative Inpainting.- Registration-Invariant Biomechanical Features for Disease Staging of COPD in SPIROMICS.- Deep Group-wise Variational Diffeomorphic Image Registration.
Автор: Burgos Ninon, Svoboda David, Wolterink Jelmer M. Название: Simulation and Synthesis in Medical Imaging: 5th International Workshop, Sashimi 2020, Held in Conjunction with Miccai 2020, Lima, Peru, October 4, 20 ISBN: 3030595196 ISBN-13(EAN): 9783030595197 Издательство: Springer Рейтинг: Цена: 46570.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book constitutes the refereed proceedings of the 5th International Workshop on Simulation and Synthesis in Medical Imaging, SASHIMI 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The 19 full papers presented were carefully reviewed and selected from 27 submissions.
Автор: Liu Mingxia, Yan Pingkun, Lian Chunfeng Название: Machine Learning in Medical Imaging: 11th International Workshop, MLMI 2020, Held in Conjunction with Miccai 2020, Lima, Peru, October 4, 2020, Procee ISBN: 3030598608 ISBN-13(EAN): 9783030598600 Издательство: Springer Рейтинг: Цена: 83850.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Temporal-Adaptive Graph Convolutional Network for Automated Identification of Major Depressive Disorder with Resting-State fMRI.- Error Attention Interactive Segmentation of Medical Images through Matting and Fusion.- A Novel fMRI Representation Learning Framework with GAN.- Semi-supervised Segmentation with Self-Training Based on Quality Estimation and Refinement.- 3D Segmentation Networks for Excessive Numbers of Classes: Distinct Bone Segmentation in Upper Bodies.- Super Resolution of Arterial Spin Labeling MR Imaging Using Unsupervised Multi-Scale Generative Adversarial Network.- Self-Recursive Contextual Network for Unsupervised 3D Medical Image Registration.- Automated Tumor Proportion Scoring for Assessment of PD-L1 Expression Based on Multi-Stage Ensemble Strategy.- Uncertainty Quantification in Medical Image Segmentation with Normalizing Flows.- Out-of-Distribution Detection for Skin Lesion Images with Deep Isolation Forest.- A 3D+2D CNN Approach Incorporating Boundary Loss for Stroke Lesion Segmentation.- Linking Adolescent Brain MRI to Obesity via Deep Multi-cue Regression Network.- Robust Multiple Sclerosis Lesion Inpainting with Edge Prior.- Segmentation to Label: Automatic Coronary Artery Labeling from Mask Parcellation.- GSR-Net: Graph Super-Resolution Network for Predicting High-Resolution from Low-Resolution Functional Brain Connectomes.- Anatomy-Aware Cardiac Motion Estimation.- Division and Fusion: Rethink Convolutional Kernels for 3D Medical Image Segmentation.- LDGAN: Longitudinal-Diagnostic Generative Adversarial Network for Disease Progression Prediction with Missing Structural MRI.- Unsupervised MRI Homogenization: Application to Pediatric Anterior Visual Pathway Segmentation.- Boundary-aware Network for Kidney Tumor Segmentation.- O-Net: An Overall Convolutional Network for Segmentation Tasks.- Label-Driven Brain Deformable Registration Using Structural Similarity and Nonoverlap Constraints.- EczemaNet: Automating Detection and Severity Assessment of Atopic Dermatitis.- Deep Distance Map Regression Network with Shape-aware Loss for Imbalanced Medical Image Segmentation.- Joint Appearance-Feature Domain Adaptation: Application to QSM Segmentation Transfer.- Exploring Functional Difference between Gyri and Sulci via Region-Specific 1D Convolutional Neural Networks.- Detection of Ischemic Infarct Core in Non-Contrast Computed Tomography.- Bayesian Neural Networks for Uncertainty Estimation of Imaging Biomarkers.- Extended Capture Range of Rigid 2D/3D Registration by Estimating Riemannian Pose Gradients.- Structural Connectivity Enriched Functional Brain Network using Simplex Regression with GraphNet.- Constructing High-Order Dynamic Functional Connectivity Networks from Resting-State fMRI for Brain Dementia Identification.- Multi-tasking Siamese Networks for Breast Mass Detection using Dual-view Mammogram Matching.- 3D Volume Reconstruction from Single Lateral X-ray Image via Cross-Modal Discrete Embedding Transition.- Cleft Volume Estimation and Maxilla Completion Using Cascaded Deep Neural Networks.- A Deep Network for Joint Registration and Reconstruction of Images with Pathologies.- Learning Conditional Deformable Shape Templates for Brain Anatomy .- Demographic-Guided Attention in Recurrent Neural Networks for Modeling Neuropathophysiological Heterogeneity.- Unsupervised Learning for Spherical Surface Registration.- Anatomy-guided Convolutional Neural Network for Motion Correction in Fetal Brain MRI.- Gyral Growth Patterns of Macaque Brains Revealed by Scattered Orthogonal Nonnegative Matrix Factorization.- Inhomogeneity Correction in Magnetic Resonance Images Using Deep Image Priors.- Hierarchical and Robust Pathology Image Reading for High-Throughput Cervical Abnormality Screening .- Importance Driven Continual Learning for Segmentation Across Domains.- RDCNet: Instance segmentation with a minimalist recurrent residual network.- Automatic Segmentation of Achilles Tend
Автор: Mohy-Ud-Din Hassan, Rathore Saima Название: Radiomics and Radiogenomics in Neuro-Oncology: First International Workshop, Rno-AI 2019, Held in Conjunction with Miccai 2019, Shenzhen, China, Octob ISBN: 3030401235 ISBN-13(EAN): 9783030401238 Издательство: Springer Рейтинг: Цена: 46570.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book constitutes the proceedings of the First International Workshop on Radiomics and Radiogenomics in Neuro-oncology, RNO-AI 2019, which was held in conjunction with MICCAI in Shenzhen, China, in October 2019. The 10 full papers presented in this volume were carefully reviewed and selected from 15 submissions.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz