Atomicity Through Fractal Measure Theory: Mathematical and Physical Fundamentals with Applications, Gavriluţ Alina, Mercheş Ioan, Agop Maricel
Автор: Alina Gavrilu?; Ioan Merche?; Maricel Agop Название: Atomicity through Fractal Measure Theory ISBN: 3030295923 ISBN-13(EAN): 9783030295929 Издательство: Springer Рейтинг: Цена: 74530.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book presents an exhaustive study of atomicity from a mathematics perspective in the framework of multi-valued non-additive measure theory. Applications to quantum physics and, more generally, to the fractal theory of the motion, are highlighted. The study details the atomicity problem through key concepts, such as the atom/pseudoatom, atomic/nonatomic measures, and different types of non-additive set-valued multifunctions. Additionally, applications of these concepts are brought to light in the study of the dynamics of complex systems.The first chapter prepares the basics for the next chapters. In the last chapter, applications of atomicity in quantum physics are developed and new concepts, such as the fractal atom are introduced. The mathematical perspective is presented first and the discussion moves on to connect measure theory and quantum physics through quantum measure theory. New avenues of research, such as fractal/multifractal measure theory with potential applications in life sciences, are opened.
Butterfly in the Quantum World by Indu Satija, with contributions by Douglas Hofstadter, is the first book ever to tell the story of the "Hofstadter butterfly", a beautiful and fascinating graph lying at the heart of the quantum theory of matter. The butterfly came out of a simple-sounding question: What happens if you immerse a crystal in a magnetic field? What energies can the electrons take on? From 1930 onwards, physicists struggled to answer this question, until 1974, when graduate student Douglas Hofstadter discovered that the answer was a graph consisting of nothing but copies of itself nested down infinitely many times. This wild mathematical object caught the physics world totally by surprise, and it continues to mesmerize physicists and mathematicians today.
The butterfly plot is intimately related to many other important phenomena in number theory and physics, including Apollonian gaskets, the Foucault pendulum, quasicrystals, the quantum Hall effect, and many more. Its story reflects the magic, the mystery, and the simplicity of the laws of nature, and Indu Satija, in a wonderfully personal style, relates this story, enriching it with a vast number of lively historical anecdotes, many photographs, beautiful visual images, and even poems, making her book a great feast, for the eyes, for the mind and for the soul.
Автор: Olga Moreira Название: Fractal Analysis ISBN: 1774076993 ISBN-13(EAN): 9781774076996 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 160770.00 T Наличие на складе: Нет в наличии. Описание: Presents a collection of contemporaneous articles to guide the reader through the world of fractals - a world of computer-generated self-similar patterns that can capture the intricacy of natural structure such as snowflakes, fern leaves, and tree branching.
Автор: Merches Ioan Et Al Название: Differentiability And Fractality In Dynamics Of Physical Systems ISBN: 9814678384 ISBN-13(EAN): 9789814678384 Издательство: World Scientific Publishing Рейтинг: Цена: 116160.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Using Cartan`s differential 1-forms theory, and assuming that the motion variables depend on Euclidean invariants, certain dynamics of the material point and systems of material points are developed.
Автор: Jacques B?lair; Serge Dubuc Название: Fractal Geometry and Analysis ISBN: 9401579334 ISBN-13(EAN): 9789401579339 Издательство: Springer Рейтинг: Цена: 46570.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Proceedings of the NATO Advanced Study Institute and Seminaire de mathematiques superieures, Montreal, Canada, July 3-21, 1989
Автор: Christoph Bandt; Kenneth Falconer; Martina Z?hle Название: Fractal Geometry and Stochastics V ISBN: 3319186590 ISBN-13(EAN): 9783319186597 Издательство: Springer Рейтинг: Цена: 130430.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book collects significant contributions from the fifth conference on Fractal Geometry and Stochastics held in Tabarz, Germany, in March 2014. The book is divided into five topical sections: geometric measure theory, self-similar fractals and recurrent structures, analysis and algebra on fractals, multifractal theory, and random constructions.
Автор: Christoph Bandt; Umberto Mosco; Martina Z?hle Название: Fractal Geometry and Stochastics III ISBN: 3034896123 ISBN-13(EAN): 9783034896122 Издательство: Springer Рейтинг: Цена: 93160.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание:
Fractal geometry is used to model complicated natural and technical phenomena in various disciplines like physics, biology, finance, and medicine. Since most convincing models contain an element of randomness, stochastics enters the area in a natural way. This book documents the establishment of fractal geometry as a substantial mathematical theory. As in the previous volumes, which appeared in 1998 and 2000, leading experts known for clear exposition were selected as authors. They survey their field of expertise, emphasizing recent developments and open problems. Main topics include multifractal measures, dynamical systems, stochastic processes and random fractals, harmonic analysis on fractals.
Автор: Lapidus Michel L., Radunovic Goran, Zubrinic Darko Название: Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions ISBN: 3319831151 ISBN-13(EAN): 9783319831152 Издательство: Springer Рейтинг: Цена: 139750.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums.
Автор: Herb Kunze; Davide La Torre; Franklin Mendivil; Ed Название: Fractal-Based Methods in Analysis ISBN: 1489973745 ISBN-13(EAN): 9781489973740 Издательство: Springer Рейтинг: Цена: 121110.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Fractal-based methods are at the heart of modeling the behavior of phenomena at varying scales. This volume collates techniques for using IFS fractals, including the very latest cutting-edge methods, from more than 20 years of research in this area.
Автор: Bruce West; Mauro Bologna; Paolo Grigolini Название: Physics of Fractal Operators ISBN: 144193054X ISBN-13(EAN): 9781441930545 Издательство: Springer Рейтинг: Цена: 78350.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This text describes the statistcal behavior of complex systems and shows how the fractional calculus can be used to model the behavior. The book gives general strategies for understanding wave propagation through random media, the nonlinear response of complex materials, and the fluctuations of heat transport in heterogeneous materials.
Автор: Manuel Fern?ndez-Mart?nez; Juan Luis Garc?a Guirao Название: Fractal Dimension for Fractal Structures ISBN: 3030166449 ISBN-13(EAN): 9783030166441 Издательство: Springer Рейтинг: Цена: 93160.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book provides a generalised approach to fractal dimension theory from the standpoint of asymmetric topology by employing the concept of a fractal structure. The fractal dimension is the main invariant of a fractal set, and provides useful information regarding the irregularities it presents when examined at a suitable level of detail. New theoretical models for calculating the fractal dimension of any subset with respect to a fractal structure are posed to generalise both the Hausdorff and box-counting dimensions. Some specific results for self-similar sets are also proved. Unlike classical fractal dimensions, these new models can be used with empirical applications of fractal dimension including non-Euclidean contexts. In addition, the book applies these fractal dimensions to explore long-memory in financial markets. In particular, novel results linking both fractal dimension and the Hurst exponent are provided. As such, the book provides a number of algorithms for properly calculating the self-similarity exponent of a wide range of processes, including (fractional) Brownian motion and L?vy stable processes. The algorithms also make it possible to analyse long-memory in real stocks and international indexes.This book is addressed to those researchers interested in fractal geometry, self-similarity patterns, and computational applications involving fractal dimension and Hurst exponent.
Автор: Michel L. Lapidus; Goran Radunovi?; Darko ?ubrini? Название: Fractal Zeta Functions and Fractal Drums ISBN: 3319447041 ISBN-13(EAN): 9783319447049 Издательство: Springer Рейтинг: Цена: 121110.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz