Контакты/Проезд
Доставка и Оплата
Помощь/Возврат
Корзина ()
Мои желания ()
История
Промокоды
Ваши заказы
+7 707 857-29-98
+7(7172) 65-23-70
10:00-18:00 пн-пт
shop@logobook.kz
Российская литература
Поиск книг
Найти
Зарубежные издательства
Российские издательства
Авторы
|
Каталог книг
|
Издательства
|
Новинки
|
Учебная литература
|
Акции
|
Бестселлеры
|
|
Войти
Регистрация
Забыли?
Traffic Distributions and Independence: Permutation Invariant Random Matrices and the Three Notions of Independence, Camille Male
Варианты приобретения
Цена:
71060.00T
Кол-во:
о цене
Наличие:
Невозможна поставка.
в Мои желания
Автор:
Camille Male
Название:
Traffic Distributions and Independence: Permutation Invariant Random Matrices and the Three Notions of Independence
ISBN:
9781470442989
Издательство:
Mare Nostrum (Eurospan)
Классификация:
Вероятность и статистика
ISBN-10: 1470442981
Обложка/Формат: Paperback
Страницы: 267
Вес: 0.19 кг.
Дата издания: 30.03.2021
Серия: Memoirs of the american mathematical society
Язык: English
Размер: 179 x 254 x 16
Читательская аудитория: Professional and scholarly
Ключевые слова: Probability & statistics
Рейтинг:
Поставляется из: Англии
Описание: Voiculescus notion of asymptotic free independence is known for a large class of random matrices including independent unitary invariant matrices. This notion is extended for independent random matrices invariant in law by conjugation by permutation matrices. This fact leads naturally to an extension of free probability, formalized under the notions of traffic probability . The author first establishes this construction for random matrices and then defines the traffic distribution of random matrices, which is richer than the $^*$-distribution of free probability. The knowledge of the individual traffic distributions of independent permutation invariant families of matrices is sufficient to compute the limiting distribution of the join family. Under a factorization assumption, the author calls traffic independence the asymptotic rule that plays the role of independence with respect to traffic distributions. Wigner matrices, Haar unitary matrices and uniform permutation matrices converge in traffic distributions, a fact which yields new results on the limiting $^*$-distributions of several matrices the author can construct from them. Then the author defines the abstract traffic spaces as non commutative probability spaces with more structure. She proves that at an algebraic level, traffic independence in some sense unifies the three canonical notions of tensor, free and Boolean independence. A central limiting theorem is stated in this context, interpolating between the tensor, free and Boolean central limit theorems.
Дополнительное описание: Probability and statistics
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Заказ по телефону/email
Помощь
Возврат товара
Есть вопрос?
Российский офис
О компании
Политика конфиденциальности
В Контакте
В Контакте Мед
Мобильная версия