Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Dynamics of Neural Networks: A Mathematical and Clinical Approach, Van Putten Michel J. a. M.


Варианты приобретения
Цена: 93160.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: 2 шт.  Склад Америка: 181 шт.  
При оформлении заказа до: 2025-09-29
Ориентировочная дата поставки: начало Ноября

Добавить в корзину
в Мои желания

Автор: Van Putten Michel J. a. M.
Название:  Dynamics of Neural Networks: A Mathematical and Clinical Approach
ISBN: 9783662611821
Издательство: Springer
Классификация:






ISBN-10: 3662611821
Обложка/Формат: Hardcover
Страницы: 259
Вес: 0.57 кг.
Дата издания: 01.02.2021
Язык: English
Издание: 1st ed. 2020
Иллюстрации: 100 tables, color; 40 illustrations, color; 98 illustrations, black and white; xvii, 259 p. 138 illus., 40 illus. in color.; 100 tables, color; 40 ill
Размер: 23.39 x 15.60 x 1.75 cm
Читательская аудитория: Professional & vocational
Подзаголовок: A mathematical and clinical approach
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book treats essentials from neurophysiology (Hodgkin-Huxley equations, synaptic transmission, prototype networks of neurons) and related mathematical concepts (dimensionality reductions, equilibria, bifurcations, limit cycles and phase plane analysis).

Introduction to Methods of Approximation in Physics and Astronomy

Автор: Van Putten Maurice H. P. M.
Название: Introduction to Methods of Approximation in Physics and Astronomy
ISBN: 9811097429 ISBN-13(EAN): 9789811097423
Издательство: Springer
Рейтинг:
Цена: 65210.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Preface

Part I Preliminaries

1. Complex numbers

1.1 Quotients of complex numbers

1.2 Roots of complex numbers

1.3 Sequences and Euler's constant

1.4 Power series and radius of convergence

1.5 Minkowski spacetime

1.6 The logarithm and winding number

1.7 Branch cuts for z

1.8 Branch cuts for z 1/p

1.9 Exercises

2. Complex function theory

2.1 Analytic functions

2.2 Cauchy's Integral Formula

2.3 Evaluation of a real integral

2.4 Residue theorem

2.5 Morera's theorem

2.6 Liouville's theorem

2.7 Poisson kernel

2.8 Flux and circulation

2.9 Examples of potential flows

2.10Exercises

3. Vectors and linear algebra

3.1 Introduction

3.2 Inner and outer products

3.3 Angular momentum vector

3.4 Elementary transformations in the plane

3.5 Matrix algebra

3.6 Eigenvalue problems

3.7 Unitary matrices and invariants

3.8 Hermitian structure of Minkowski spacetime

3.9 Eigenvectors of Hermitian matrices

3.10QR factorization

3.11Exercises

4. Linear partial differential equations

4.1 Hyperbolic equations

4.2 Diffusion equation

4.3 Elliptic equations

4.4 Characteristic of hyperbolic systems

4.5 Weyl equation

4.6 Exercises

Part II Methods of approximation

5. Projections and minimal distances

5.1 Vectors and distances

5.2 Projections of vectors

5.3 Snell's law and Fermat's principle

5.4 Fitting data by least squares

5.5 Gauss-Legendre quadrature

5.6 Exercises

6. Spectral methods and signal analysis

6.1 Basis functions

6.2 Expansion in Legendre polynomials 6.3 Fourier expansion

6.4 The Fourier transform

6.5 Fourier series

6.6 Chebychev polynomials

6.7 Weierstrass approximation theorem

6.8 Detector signals in the presence of noise

6.9 Signal detection by FFT using Maxima

6.10GPU-Butterfly filter in (f, f)

6.11Exercises

7. Root finding

7.1 Solving for √2 and π
7.2 Convergence in Newton's method

7.3 Contraction mapping

7.4 Newton's method in two dimensions

7.5 Basins of attraction

7.6 Root finding in higher dimensions

7.7 Exercises

8. Finite differencing: differentiation and integration

8.1 Vector fields

8.2 Gradient operator

8.3 Integration of ODE's

8.4 Numerical integration of ODE's

8.5 Examples of ordinary differential equations

8.6 Exercises

9. Perturbation theory, scaling and turbulence

9.1 Roots of a cubic equation

9.2 Damped pendulum

9.3 Orbital motion

9.4 Inertial and viscous fluid motion

9.5 Kolmogorov scaling of homogeneous turbulence

9.6 Exercises

Part III Selected topics

10. Thermodynamics of N-body systems

10.1 The action principle

10.2 Momentum in Euler-Lagragne equations

10.3 Legendre transformation

10.4 Hamiltonian formulation

10.5 Globular clusters

10.6 Coefficients of relaxation

10.7 Exercises

11. Accretion flows onto black holes

11.1 Bondi accretioin

11.2 Hoyle-Lyttleton accretion

11.3 Accretion disks

11.4 Gravitational wave emission

11.5 Mass transfer in binaries

11.6 Exercises

12. Rindler observers in astrophysics and cosmology

12.1 The moving mirror problem

12.2 Implications for dark matter

12.3 Exercises

A. Some units and consta

Networked Nation: Mapping German Cities in Sebastian Munster`s `Cosmographia`

Автор: Jasper Cornelis van Putten
Название: Networked Nation: Mapping German Cities in Sebastian Munster`s `Cosmographia`
ISBN: 9004335994 ISBN-13(EAN): 9789004335998
Издательство: Brill
Цена: 197910.00 T
Наличие на складе: Невозможна поставка.
Описание: In Networked Nation: Mapping German Cities in Sebastian Munster’s 'Cosmographia', Jasper van Putten examines the groundbreaking woodcut city views in the German humanist Sebastian Munster’s Cosmographia. This description of the world, published in Basel from 1544 to 1628, glorified the Holy Roman Empire of the German Nation and engendered the city book genre. Van Putten argues that Munster’s network of city view makers and contributors—from German princes and artists to Swiss woodcutters, draftsmen, and printers—expressed their local and national cultural identities in the views. The Cosmographia, and the city books it inspired, offer insights into the development of German and Swiss identity from 1550 to Switzerland’s independence from the empire in 1648.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия