Sparsity Methods for Systems and Control, Nagahara Masaaki
Автор: Ran Shi-Ju, Tirrito Emanuele, Peng Cheng Название: Tensor Network Contractions: Methods and Applications to Quantum Many-Body Systems ISBN: 3030344886 ISBN-13(EAN): 9783030344887 Издательство: Springer Рейтинг: Цена: 46570.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences.
Автор: Steven L. Brunton, J. Nathan Kutz Название: Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control ISBN: 1108422098 ISBN-13(EAN): 9781108422093 Издательство: Amazon Internet Рейтинг: Цена: 0.00 T Наличие на складе: Невозможна поставка. Описание: Data-driven discovery is revolutionizing the modeling, prediction, and control of complex systems. Aimed at advanced undergraduate and beginning graduate students, this textbook provides an integrated viewpoint that shows how to apply emerging methods from data science, data mining, and machine learning to engineering and the physical sciences.
Название: A Theory of Learning and Generalization: With Applications to Neural Networks and Control Systems ISBN: 1849968675 ISBN-13(EAN): 9781849968676 Издательство: Springer Рейтинг: Цена: 156720.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: How does a machine learn a new concept on the basis of examples? This second edition takes account of important new developments in the field. It also deals extensively with the theory of learning control systems, now comparably mature to learning of neural networks.
Автор: Agarwal Название: Statistical Methods for Recommender Systems ISBN: 1107036070 ISBN-13(EAN): 9781107036079 Издательство: Cambridge Academ Рейтинг: Цена: 50680.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples from applications they are directly involved with.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz