Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Sparsity Methods for Systems and Control, Nagahara Masaaki


Варианты приобретения
Цена: 82230.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 203 шт.  
При оформлении заказа до:
Ориентировочная дата поставки:
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Nagahara Masaaki
Название:  Sparsity Methods for Systems and Control
ISBN: 9781680837247
Издательство: Mare Nostrum (Eurospan)
Классификация:
ISBN-10: 1680837249
Обложка/Формат: Hardcover
Страницы: 220
Вес: 0.49 кг.
Дата издания: 30.10.2020
Серия: Physics
Язык: English
Размер: 23.39 x 15.60 x 1.42 cm
Читательская аудитория: Professional and scholarly
Ключевые слова: Machine learning,Mathematical & statistical software,Signal processing, COMPUTERS / Mathematical & Statistical Software,TECHNOLOGY & ENGINEERING / Signals & Signal
Рейтинг:
Поставляется из: Англии
Описание: Offers a comprehensive guide to sparsity methods for systems and control, from standard sparsity methods in finite-dimensional vector spaces to optimal control methods in infinite-dimensional function spaces.The primary objective of this book is to show how to use sparsity methods for several engineering problems.

Tensor Network Contractions: Methods and Applications to Quantum Many-Body Systems

Автор: Ran Shi-Ju, Tirrito Emanuele, Peng Cheng
Название: Tensor Network Contractions: Methods and Applications to Quantum Many-Body Systems
ISBN: 3030344886 ISBN-13(EAN): 9783030344887
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences.

Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control

Автор: Steven L. Brunton, J. Nathan Kutz
Название: Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
ISBN: 1108422098 ISBN-13(EAN): 9781108422093
Издательство: Amazon Internet
Рейтинг:
Цена: 0.00 T
Наличие на складе: Невозможна поставка.
Описание: Data-driven discovery is revolutionizing the modeling, prediction, and control of complex systems. Aimed at advanced undergraduate and beginning graduate students, this textbook provides an integrated viewpoint that shows how to apply emerging methods from data science, data mining, and machine learning to engineering and the physical sciences.

A Theory of Learning and Generalization: With Applications to Neural Networks and Control Systems

Название: A Theory of Learning and Generalization: With Applications to Neural Networks and Control Systems
ISBN: 1849968675 ISBN-13(EAN): 9781849968676
Издательство: Springer
Рейтинг:
Цена: 156720.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: How does a machine learn a new concept on the basis of examples? This second edition takes account of important new developments in the field. It also deals extensively with the theory of learning control systems, now comparably mature to learning of neural networks.

Statistical Methods for Recommender Systems

Автор: Agarwal
Название: Statistical Methods for Recommender Systems
ISBN: 1107036070 ISBN-13(EAN): 9781107036079
Издательство: Cambridge Academ
Рейтинг:
Цена: 50680.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples from applications they are directly involved with.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия