Big data analytics with applications in insider threat detection, Thuraisingham, Bhavani Parveen, Pallabi Masud, Mohammad Mehedy Khan, Latifur
Автор: Strickland Jeffrey Название: Data Science Applications using Python and R: Text Analytics ISBN: 1716896444 ISBN-13(EAN): 9781716896446 Издательство: Неизвестно Рейтинг: Цена: 72430.00 T Наличие на складе: Есть у поставщика Поставка под заказ.
Название: Agile Data Science: Building Full-Stack Data Analytics Applications with Spark ISBN: 1491960116 ISBN-13(EAN): 9781491960110 Издательство: Wiley Рейтинг: Цена: 50680.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: With the revised second edition of this hands-on guide, up-and-coming data scientists will learn how to use the Agile Data Science development methodology to build data applications with Python, Apache Spark, Kafka, and other tools.
Автор: Anandakumar Haldorai, Arulmurugan Ramu Название: Cognitive Social Mining Applications in Data Analytics and Forensics ISBN: 1522575227 ISBN-13(EAN): 9781522575221 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 189420.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Recently, there has been a rapid increase in interest regarding social network analysis in the data mining community. Cognitive radios are expected to play a major role in meeting this exploding traffic demand on social networks due to their ability to sense the environment, analyze outdoor parameters, and then make decisions for dynamic time, frequency, space, resource allocation, and management to improve the utilization of mining the social data.Cognitive Social Mining Applications in Data Analytics and Forensics is an essential reference source that reviews cognitive radio concepts and examines their applications to social mining using a machine learning approach so that an adaptive and intelligent mining is achieved. Featuring research on topics such as data mining, real-time ubiquitous social mining services, and cognitive computing, this book is ideally designed for social network analysts, researchers, academicians, and industry professionals.
Автор: Baesens Bart, Verbeke Wouter, Van Vlasselaer Veron Название: Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques: A Guide to Data Science for Fraud Detection ISBN: 1119133122 ISBN-13(EAN): 9781119133124 Издательство: Wiley Рейтинг: Цена: 41190.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Detect fraud earlier to mitigate loss and prevent cascading damage Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques is an authoritative guidebook for setting up a comprehensive fraud detection analytics solution.
Автор: Isayev O Название: Materials Informatics: Methods, Tools, and Applications ISBN: 3527341218 ISBN-13(EAN): 9783527341214 Издательство: Wiley Рейтинг: Цена: 102380.00 T Наличие на складе: Поставка под заказ. Описание: Provides everything readers need to know for applying the power of informatics to materials science There is a tremendous interest in materials informatics and application of data mining to materials science. This book is a one-stop guide to the latest advances in these emerging fields. Bridging the gap between materials science and informatics, it introduces readers to up-to-date data mining and machine learning methods. It also provides an overview of state-of-the-art software and tools. Case studies illustrate the power of materials informatics in guiding the experimental discovery of new materials. Materials Informatics: Methods, Tools and Applications is presented in two parts?Methodological Aspects of Materials Informatics and Practical Aspects and Applications. The first part focuses on developments in software, databases, and high-throughput computational activities. Chapter topics include open quantum materials databases; the ICSD database; open crystallography databases; and more. The second addresses the latest developments in data mining and machine learning for materials science. Its chapters cover genetic algorithms and crystal structure prediction; MQSPR modeling in materials informatics; prediction of materials properties; amongst others. -Bridges the gap between materials science and informatics -Covers all the known methodologies and applications of materials informatics -Presents case studies that illustrate the power of materials informatics in guiding the experimental quest for new materials -Examines the state-of-the-art software and tools being used today Materials Informatics: Methods, Tools and Applications is a must-have resource for materials scientists, chemists, and engineers interested in the methods of materials informatics.
Автор: Emmanouil Amolochitis Название: Algorithms and Applications for Academic Search, Recommendation and Quantitative Association Rule Mining ISBN: 8793609647 ISBN-13(EAN): 9788793609648 Издательство: Taylor&Francis Рейтинг: Цена: 78590.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Algorithms and Applications for Academic Search, Recommendation and Quantitative Association Rule Mining presents novel algorithms for academic search, recommendation and association rule mining that have been developed and optimized for different commercial as well as academic purpose systems. Along with the design and implementation of algorithms, a major part of the work presented in the book involves the development of new systems both for commercial as well as for academic use. In the first part of the book the author introduces a novel hierarchical heuristic scheme for re-ranking academic publications retrieved from standard digital libraries. The scheme is based on the hierarchical combination of a custom implementation of the term frequency heuristic, a time-depreciated citation score and a graph-theoretic computed score that relates the paper’s index terms with each other. In order to evaluate the performance of the introduced algorithms, a meta-search engine has been designed and developed that submits user queries to standard digital repositories of academic publications and re-ranks the top-n results using the introduced hierarchical heuristic scheme. In the second part of the book the design of novel recommendation algorithms with application in different types of e-commerce systems are described. The newly introduced algorithms are a part of a developed Movie Recommendation system, the first such system to be commercially deployed in Greece by a major Triple Play services provider. The initial version of the system uses a novel hybrid recommender (user, item and content based) and provides daily recommendations to all active subscribers of the provider (currently more than 30,000). The recommenders that we are presenting are hybrid by nature, using an ensemble configuration of different content, user as well as item-based recommenders in order to provide more accurate recommendation results.The final part of the book presents the design of a quantitative association rule mining algorithm. Quantitative association rules refer to a special type of association rules of the form that antecedent implies consequent consisting of a set of numerical or quantitative attributes. The introduced mining algorithm processes a specific number of user histories in order to generate a set of association rules with a minimally required support and confidence value. The generated rules show strong relationships that exist between the consequent and the antecedent of each rule, representing different items that have been consumed at specific price levels. This research book will be of appeal to researchers, graduate students, professionals, engineers and computer programmers.
Автор: Gunter Wallner Название: Data Analytics Applications in Gaming and Entertainment ISBN: 1138104434 ISBN-13(EAN): 9781138104433 Издательство: Taylor&Francis Рейтинг: Цена: 107190.00 T Наличие на складе: Нет в наличии. Описание: Over the last decade big data and data mining has received growing interest and importance in game production to process and draw actionable insights from large volumes of player-related data in order to inform game design, to ensure customer satisfaction, to maximize revenues, and to drive technical innovation.
Автор: Galit Shmueli, Peter C. Bruce, Nitin R. Patel Название: Data Mining for Business Analytics: Concepts, Techniques, and Applications with XLMiner ISBN: 1118729277 ISBN-13(EAN): 9781118729274 Издательство: Wiley Рейтинг: Цена: 118270.00 T Наличие на складе: Поставка под заказ. Описание: Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner(R), Third Edition presents an applied approach to data mining and predictive analytics with clear exposition, hands-on exercises, and real-life case studies.
Автор: C.S.R. Prabhu; Aneesh Sreevallabh Chivukula; Adity Название: Big Data Analytics: Systems, Algorithms, Applications ISBN: 9811500932 ISBN-13(EAN): 9789811500930 Издательство: Springer Рейтинг: Цена: 60550.00 T Наличие на складе: Поставка под заказ. Описание:
This book provides a comprehensive survey of techniques, technologies and applications of Big Data and its analysis. The Big Data phenomenon is increasingly impacting all sectors of business and industry, producing an emerging new information ecosystem. On the applications front, the book offers detailed descriptions of various application areas for Big Data Analytics in the important domains of Social Semantic Web Mining, Banking and Financial Services, Capital Markets, Insurance, Advertisement, Recommendation Systems, Bio-Informatics, the IoT and Fog Computing, before delving into issues of security and privacy.
With regard to machine learning techniques, the book presents all the standard algorithms for learning – including supervised, semi-supervised and unsupervised techniques such as clustering and reinforcement learning techniques to perform collective Deep Learning. Multi-layered and nonlinear learning for Big Data are also covered.
In turn, the book highlights real-life case studies on successful implementations of Big Data Analytics at large IT companies such as Google, Facebook, LinkedIn and Microsoft. Multi-sectorial case studies on domain-based companies such as Deutsche Bank, the power provider Opower, Delta Airlines and a Chinese City Transportation application represent a valuable addition.
Given its comprehensive coverage of Big Data Analytics, the book offers a unique resource for undergraduate and graduate students, researchers, educators and IT professionals alike.
Автор: Raj & Chandra Deka Название: Cloud Infrastructures For Big Data Analytics ISBN: 1466658649 ISBN-13(EAN): 9781466658646 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 335410.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Clouds are being positioned as the next-generation consolidated, centralised, yet federated IT infrastructure for hosting all kinds of IT platforms and for deploying, maintaining, and managing a wider variety of personal, as well as professional, applications and services.Cloud Infrastructures for Big Data Analytics focuses exclusively on the topic of cloud-sponsored big data analytics for creating flexible and futuristic organisations. This book helps researchers and practitioners, as well as business entrepreneurs, to make informed decisions and consider appropriate action to simplify and streamline the arduous journey towards smarter enterprises.
As data holdings get bigger and questions get harder, data scientists and analysts must focus on the systems, the tools and techniques, and the disciplined process to get the correct answer, quickly Whether you work within industry or government, this book will provide you with a foundation to successfully and confidently process large amounts of quantitative data.
Here are just a dozen of the many questions answered within these pages:
What does quantitative analysis of a system really mean?
What is a system?
What are big data and analystics?
How do you know your numbers are good?
What will the future data science environment look like?
How do you determine data provenance?
How do you gather and process information, and then organize, store, and synthesize it?
How does an organization implement data analytics?
Do you really need to think like a Chief Information Officer?
What is the best way to protect data?
What makes a good dashboard?
What is the relationship between eating ice cream and getting attacked by a shark?
The nine chapters in this book are arranged in three parts that address systems concepts in general, tools and techniques, and future trend topics. Systems concepts include contrasting open and closed systems, performing data mining and big data analysis, and gauging data quality. Tools and techniques include analyzing both continuous and discrete data, applying probability basics, and practicing quantitative analysis such as descriptive and inferential statistics. Future trends include leveraging the Internet of Everything, modeling Artificial Intelligence, and establishing a Data Analytics Support Office (DASO).
Many examples are included that were generated using common software, such as Excel, Minitab, Tableau, SAS, and Crystal Ball. While words are good, examples can sometimes be a better teaching tool. For each example included, data files can be found on the companion website. Many of the data sets are tied to the global economy because they use data from shipping ports, air freight hubs, largest cities, and soccer teams. The appendices contain more detailed analysis including the 10 T's for Data Mining, Million Row Data Audit (MRDA) Processes, Analysis of Rainfall, and Simulation Models for Evaluating Traffic Flow.
Автор: N. N. R. Ranga Suri; Narasimha Murty M; G. Athitha Название: Outlier Detection: Techniques and Applications ISBN: 3030051250 ISBN-13(EAN): 9783030051259 Издательство: Springer Рейтинг: Цена: 158380.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book, drawing on recent literature, highlights several methodologies for the detection of outliers and explains how to apply them to solve several interesting real-life problems. The detection of objects that deviate from the norm in a data set is an essential task in data mining due to its significance in many contemporary applications. More specifically, the detection of fraud in e-commerce transactions and discovering anomalies in network data have become prominent tasks, given recent developments in the field of information and communication technologies and security. Accordingly, the book sheds light on specific state-of-the-art algorithmic approaches such as the community-based analysis of networks and characterization of temporal outliers present in dynamic networks. It offers a valuable resource for young researchers working in data mining, helping them understand the technical depth of the outlier detection problem and devise innovative solutions to address related challenges.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz