Data Science on Aws: Implementing End-To-End, Continuous AI and Machine Learning Pipelines, Fregly Chris, Barth Antje
Автор: Jackovich Jeffrey, Richards Ruze Название: Machine Learning with AWS ISBN: 1789806194 ISBN-13(EAN): 9781789806199 Издательство: Неизвестно Рейтинг: Цена: 32180.00 T Наличие на складе: Нет в наличии. Описание: In this book, you will learn about the various artificial intelligence and machine learning services available on AWS. Through practical hands-on exercises, you`ll learn how to use these services to generate impressive results. By the end of this book, you will have a basic understanding of how to use a wide range of AWS services in your own ...
Автор: Mengle Saket S. R., Gurmendez Maximo Название: Mastering Machine Learning on AWS ISBN: 1789349796 ISBN-13(EAN): 9781789349795 Издательство: Неизвестно Рейтинг: Цена: 47810.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book will help you master your skills in various artificial intelligence and machine learning services available on AWS. Through practical hands-on examples, you`ll learn how to use these services to generate impressive results. You will have a tremendous understanding of how to use a wide range of AWS services in your own organization.
Companies are spending billions on machine learning projects, but it's money wasted if the models can't be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. You'll learn the techniques and tools that will cut deployment time from days to minutes, so that you can focus on developing new models rather than maintaining legacy systems.
Data scientists, machine learning engineers, and DevOps engineers will discover how to go beyond model development to successfully productize their data science projects, while managers will better understand the role they play in helping to accelerate these projects. The book also explores new approaches for integrating data privacy into machine learning pipelines.
Understand the machine learning management lifecycle
Implement data pipelines with Apache Airflow and Kubeflow Pipelines
Work with data using TensorFlow tools like ML Metadata, TensorFlow Data Validation, and TensorFlow Transform
Analyze models with TensorFlow Model Analysis and ship them with the TFX Model Pusher Component after the ModelValidator TFX Component confirmed that the analysis results are an improvement
Deploy models in a variety of environments with TensorFlow Serving, TensorFlow Lite, and TensorFlow.js
Learn methods for adding privacy, including differential privacy with TensorFlow Privacy and federated learning with TensorFlow Federated
Design model feedback loops to increase your data sets and learn when to update your machine learning models
Автор: Hurwitz, Kaufman Marcia, Bowles Adrian Название: Cognitive Computing: Implementing Big Data Machine Learning Solutions ISBN: 1118896629 ISBN-13(EAN): 9781118896624 Издательство: Wiley Рейтинг: Цена: 40120.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: A comprehensive guide to learning technologies that unlock the value in big data Cognitive Computing provides detailed guidance toward building a new class of systems that learn from experience and derive insights to unlock the value of big data.
Integrate scikit-learn with various tools such as NumPy, pandas, imbalanced-learn, and scikit-surprise and use it to solve real-world machine learning problems
Key Features
Delve into machine learning with this comprehensive guide to scikit-learn and scientific Python
Master the art of data-driven problem-solving with hands-on examples
Foster your theoretical and practical knowledge of supervised and unsupervised machine learning algorithms
Book Description
Machine learning is applied everywhere, from business to research and academia, while scikit-learn is a versatile library that is popular among machine learning practitioners. This book serves as a practical guide for anyone looking to provide hands-on machine learning solutions with scikit-learn and Python toolkits.
The book begins with an explanation of machine learning concepts and fundamentals, and strikes a balance between theoretical concepts and their applications. Each chapter covers a different set of algorithms, and shows you how to use them to solve real-life problems. You'll also learn about various key supervised and unsupervised machine learning algorithms using practical examples. Whether it is an instance-based learning algorithm, Bayesian estimation, a deep neural network, a tree-based ensemble, or a recommendation system, you'll gain a thorough understanding of its theory and learn when to apply it. As you advance, you'll learn how to deal with unlabeled data and when to use different clustering and anomaly detection algorithms.
By the end of this machine learning book, you'll have learned how to take a data-driven approach to provide end-to-end machine learning solutions. You'll also have discovered how to formulate the problem at hand, prepare required data, and evaluate and deploy models in production.
What you will learn
Understand when to use supervised, unsupervised, or reinforcement learning algorithms
Find out how to collect and prepare your data for machine learning tasks
Tackle imbalanced data and optimize your algorithm for a bias or variance tradeoff
Apply supervised and unsupervised algorithms to overcome various machine learning challenges
Employ best practices for tuning your algorithm's hyper parameters
Discover how to use neural networks for classification and regression
Build, evaluate, and deploy your machine learning solutions to production
Who this book is for
This book is for data scientists, machine learning practitioners, and anyone who wants to learn how machine learning algorithms work and to build different machine learning models using the Python ecosystem. The book will help you take your knowledge of machine learning to the next level by grasping its ins and outs and tailoring it to your needs. Working knowledge of Python and a basic understanding of underlying mathematical and statistical concepts is required.
Автор: Sarferaz Siar, Banda Raghu Название: Implementing Machine Learning with SAP S/4hana ISBN: 149322011X ISBN-13(EAN): 9781493220113 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 102570.00 T Наличие на складе: Невозможна поставка. Описание: Put machine learning to work in SAP S/4HANA! Get started by reviewing your available tools and implementation options. Then, learn how to set up services, train models, and manage applications. With details on extensibility and related SAP Cloud Platform services, you`ll find everything you need to make the most of machine learning!
Автор: Team Documentation Название: Aws Deeplens Developer Guide ISBN: 9888408429 ISBN-13(EAN): 9789888408429 Издательство: Неизвестно Цена: 43670.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание:
AWS DeepLens is a wireless video camera and API. It shows you how to use the latest Artificial Intelligence (AI) tools and technology to develop computer vision applications. Through examples and tutorials, AWS DeepLens gives you hands-on experience using a physical camera to run real-time computer vision models.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz