Автор: Sergios Theodoridis Название: Machine Learning ISBN: 0128015225 ISBN-13(EAN): 9780128015223 Издательство: Elsevier Science Цена: 77570 T Наличие на складе: Невозможна поставка. Описание: This tutorial text gives a unifying perspective on machine learning by covering bothprobabilistic and deterministic approaches -which are based on optimization techniques – together with the Bayesian inference approach, whose essence liesin the use of a hierarchy of probabilistic models.The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as short courses on sparse modeling, deep learning, and probabilistic graphical models.
Автор: Strang Gilbert Название: Linear Algebra and Learning from Data ISBN: 0692196382 ISBN-13(EAN): 9780692196380 Издательство: Cambridge Academ Рейтинг: Цена: 66520.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation.
Автор: Christopher M. Bishop Название: Pattern Recognition and Machine Learning ISBN: 0387310738 ISBN-13(EAN): 9780387310732 Издательство: Springer Рейтинг: Цена: 79190.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Автор: Rasmussen, Carl Edward Williams, Christopher K. I. Название: Gaussian processes for machine learning ISBN: 026218253X ISBN-13(EAN): 9780262182539 Издательство: MIT Press Рейтинг: Цена: 56430.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание:
A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines.
Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.
Автор: Kevin Murphy Название: Machine Learning ISBN: 0262018020 ISBN-13(EAN): 9780262018029 Издательство: MIT Press Рейтинг: Цена: 124150.00 T Наличие на складе: Невозможна поставка. Описание:
A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.
Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.
The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package -- PMTK (probabilistic modeling toolkit) -- that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Автор: Darren Cook Название: Practical Machine Learning with H2O ISBN: 149196460X ISBN-13(EAN): 9781491964606 Издательство: Wiley Рейтинг: Цена: 42230.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This hands-on guide teaches you how to use H20 with only minimal math and theory behind the learning algorithms.
Автор: Steven L. Brunton, J. Nathan Kutz Название: Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control ISBN: 1108422098 ISBN-13(EAN): 9781108422093 Издательство: Amazon Internet Рейтинг: Цена: 0.00 T Наличие на складе: Невозможна поставка. Описание: Data-driven discovery is revolutionizing the modeling, prediction, and control of complex systems. Aimed at advanced undergraduate and beginning graduate students, this textbook provides an integrated viewpoint that shows how to apply emerging methods from data science, data mining, and machine learning to engineering and the physical sciences.
Автор: Koehn, Philipp Название: Statistical machine translation ISBN: 0521874157 ISBN-13(EAN): 9780521874151 Издательство: Cambridge Academ Рейтинг: Цена: 69690.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Automatic language translation systems like those used by Google, have been revolutionized by recent advances in the methods used in statistical machine translation. This first textbook on the topic explains these innovations carefully and shows the reader, whether a student or a developer, how to build their own translation system.
Автор: Raschka, Sebastian Mirjalili, Vahid Название: Python machine learning - ISBN: 1787125939 ISBN-13(EAN): 9781787125933 Издательство: Неизвестно Цена: 53940.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This second edition of Python Machine Learning by Sebastian Raschka is for developers and data scientists looking for a practical approach to machine learning and deep learning. In this updated edition, you`ll explore the machine learning process using Python and the latest open source technologies, including scikit-learn and TensorFlow 1.x.
Автор: Alpaydin Ethem Название: Machine Learning: The New AI ISBN: 0262529513 ISBN-13(EAN): 9780262529518 Издательство: MIT Press Рейтинг: Цена: 18000.00 T Наличие на складе: Нет в наличии. Описание:
A concise overview of machine learning -- computer programs that learn from data -- which underlies applications that include recommendation systems, face recognition, and driverless cars.
Today, machine learning underlies a range of applications we use every day, from product recommendations to voice recognition -- as well as some we don't yet use everyday, including driverless cars. It is the basis of the new approach in computing where we do not write programs but collect data; the idea is to learn the algorithms for the tasks automatically from data. As computing devices grow more ubiquitous, a larger part of our lives and work is recorded digitally, and as "Big Data" has gotten bigger, the theory of machine learning -- the foundation of efforts to process that data into knowledge -- has also advanced. In this book, machine learning expert Ethem Alpaydin offers a concise overview of the subject for the general reader, describing its evolution, explaining important learning algorithms, and presenting example applications.
Alpaydin offers an account of how digital technology advanced from number-crunching mainframes to mobile devices, putting today's machine learning boom in context. He describes the basics of machine learning and some applications; the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances, with such applications as customer segmentation and learning recommendations; and reinforcement learning, when an autonomous agent learns act so as to maximize reward and minimize penalty. Alpaydin then considers some future directions for machine learning and the new field of "data science," and discusses the ethical and legal implications for data privacy and security.
Автор: Boyd Stephen Название: Introduction to Applied Linear Algebra ISBN: 1316518965 ISBN-13(EAN): 9781316518960 Издательство: Cambridge Academ Рейтинг: Цена: 45410.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: A groundbreaking introductory textbook covering the linear algebra methods needed for data science and engineering applications. It combines straightforward explanations with numerous practical examples and exercises from data science, machine learning and artificial intelligence, signal and image processing, navigation, control, and finance.
Автор: Little Max A Название: Machine Learning for Signal Processing ISBN: 0198714939 ISBN-13(EAN): 9780198714934 Издательство: Oxford Academ Рейтинг: Цена: 80250.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Describes in detail the fundamental mathematics and algorithms of machine learning (an example of artificial intelligence) and signal processing, two of the most important and exciting technologies in the modern information economy. Builds up concepts gradually so that the ideas and algorithms can be implemented in practical software applications.
Автор: Ian H. Witten Название: Data Mining: Practical Machine Learning Tools and Techniques, ISBN: 0123748569 ISBN-13(EAN): 9780123748560 Издательство: Elsevier Science Рейтинг: Цена: 57970.00 T Наличие на складе: Поставка под заказ. Описание: Like the popular second edition, Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. Inside, you'll learn all you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining?including both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. <br><br>Complementing the book is a fully functional platform-independent open source Weka software for machine learning, available for free download. <br><br>The book is a major revision of the second edition that appeared in 2005. While the basic core remains the same, it has been updated to reflect the changes that have taken place over the last four or five years. The highlights for the updated new edition include completely revised technique sections; new chapter on Data Transformations, new chapter on Ensemble Learning, new chapter on Massive Data Sets, a new ?book release? version of the popular Weka machine learning open source software (developed by the authors and specific to the Third Edition); new material on ?multi-instance learning?; new information on ranking the classification, plus comprehensive updates and modernization throughout. All in all, approximately 100 pages of new material.<br> <br><br>* Thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques<br><br>* Algorithmic methods at the heart of successful data mining?including tired and true methods as well as leading edge methods<br><br>* Performance improvement techniques that work by transforming the input or output<br><br>* Downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization?in an updated, interactive interface. <br>
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz