Quasi-periodic Standing Wave Solutions of Gravity-Capillary Water Waves, Massimiliano Berti, Riccardo Montalto
Автор: Han-lin Chen Название: Complex Harmonic Splines, Periodic Quasi-Wavelets ISBN: 0792361377 ISBN-13(EAN): 9780792361374 Издательство: Springer Рейтинг: Цена: 83850.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book, written by our distinguished colleague and friend, Professor Han-Lin Chen of the Institute of Mathematics, Academia Sinica, Beijing, presents, for the first time in book form, his extensive work on complex harmonic splines with applications to wavelet analysis and the numerical solution of boundary integral equations.
Автор: Bernold Fiedler Название: Global Bifurcation of Periodic Solutions with Symmetry ISBN: 3540192344 ISBN-13(EAN): 9783540192343 Издательство: Springer Рейтинг: Цена: 23250.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Suppose one encounters a continuous time dynamical system with some built-in symmetry. Should one expect periodic motions which somehow reflect this symmetry? And how would periodicity harmonize with symmetry? This book probes these questions.
Автор: A. Ambrosetti; V. Coti-Zelati Название: Periodic Solutions of Singular Lagrangian Systems ISBN: 1461267056 ISBN-13(EAN): 9781461267058 Издательство: Springer Рейтинг: Цена: 93160.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Thismonographdealswiththeexistenceofperiodicmotionsof Lagrangiansystemswith ndegreesoffreedom ij + V'(q) =0, where Visasingularpotential.Aprototypeofsuchaproblem, evenifitisnottheonlyphysicallyinterestingone, istheKepler problem .. q 0 q+yqr= . This, jointlywiththemoregeneralN-bodyproblem, hasalways beentheobjectofagreatdealofresearch.Mostofthoseresults arebasedonperturbationmethods, andmakeuseofthespecific featuresoftheKeplerpotential. OurapproachismoreonthelinesofNonlinearFunctional Analysis: ourmainpurposeistogiveafunctionalframefor systemswithsingularpotentials, includingtheKeplerandthe N-bodyproblemasparticularcases.PreciselyweuseCritical PointTheorytoobtainexistenceresults, qualitativeinnature, whichholdtrueforbroadclassesofpotentials.Thishighlights thatthevariationalmethods, whichhavebeenemployedtoob- tainimportantadvancesinthestudyofregularHamiltonian systems, canbesuccessfallyusedtohandlesingularpotentials aswell. Theresearchonthistopicisstillinevolution, andtherefore theresultswewillpresentarenottobeintendedasthefinal ones. Indeedamajorpurposeofourdiscussionistopresent methodsandtoolswhichhavebeenusedinstudyingsuchprob- lems. Vlll PREFACE Partofthematerialofthisvolumehasbeenpresentedina seriesoflecturesgivenbytheauthorsatSISSA, Trieste, whom wewouldliketothankfortheirhospitalityandsupport. We wishalsotothankUgoBessi, PaoloCaldiroli, FabioGiannoni, LouisJeanjean, LorenzoPisani, EnricoSerra, KazunakaTanaka, EnzoVitillaroforhelpfulsuggestions. May26,1993 Notation n 1.For x, yE IR, x. ydenotestheEuclideanScalarproduct, and IxltheEuclideannorm. 2. meas(A)denotestheLebesguemeasureofthesubset Aof n IR - 3.Wedenoteby ST = 0, T]/{a, T}theunitarycirclepara- metrizedby t E 0, T].Wewillalsowrite SI= ST=I. n 1 n 4.Wewillwrite sn = {xE IR +: Ixl =I}andn = IR \{O}. n 5.Wedenoteby LP( O, T], IR ),1 p +00, theLebesgue spaces, equippedwiththestandardnorm lIulip. l n l n 6. H (ST, IR )denotestheSobolevspaceof u E H,2(0, T; IR ) suchthat u(O) = u(T).Thenormin HIwillbedenoted by lIull2 = lIull + lIull - 7.Wedenoteby(-1-)and11-11respectivelythescalarproduct andthenormoftheHilbertspace E. 8.For uE E, EHilbertorBanachspace, wedenotetheball ofcenter uandradiusrby B(u, r) = {vE E: lIu- vii r}.Wewillalsowrite B = B(O, r). r 1 1 9.WesetA (n) = {uE H (St, n)}. k 10.For VE C (1Rxil, IR)wedenoteby V'(t, x)thegradient of Vwithrespectto x. l 11.Given f E C (M, IR), MHilbertmanifold, welet r = {uEM: f(u) a}, f-l(a, b) = {uE E: a f(u) b}. x NOTATION 12.Given f E C1(M, JR), MHilbertmanifold, wewilldenote by Zthesetofcriticalpointsof fon Mandby Zctheset Z U f-l(c, c). 13.Givenasequence UnE E, EHilbertspace, by Un ---"" Uwe willmeanthatthesequence Unconvergesweaklyto u. 14.With (E)wewilldenotethesetoflinearandcontinuous operatorson E. 15.With Ck''''(A, JR)wewilldenotethesetoffunctions ffrom AtoJR, ktimesdifferentiablewhosek-derivativeisHolder continuousofexponent0: . Main Assumptions Wecollecthere, forthereader'sconvenience, themainassump- tionsonthepotential Vusedthroughoutthebook. (VO) VEC1(lRXO, lR), V(t+T, x)=V(t, X) V(t, x)ElRXO, (VI) V(t, x)
Автор: Massimiliano Berti; Jean-Marc Delort Название: Almost Global Solutions of Capillary-Gravity Water Waves Equations on the Circle ISBN: 3319994859 ISBN-13(EAN): 9783319994857 Издательство: Springer Рейтинг: Цена: 41920.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: The goal of this monograph is to prove that any solution of the Cauchy problem for the capillary-gravity water waves equations, in one space dimension, with periodic, even in space, small and smooth enough initial data, is almost globally defined in time on Sobolev spaces, provided the gravity-capillarity parameters are taken outside an exceptional subset of zero measure. In contrast to the many results known for these equations on the real line, with decaying Cauchy data, one cannot make use of dispersive properties of the linear flow. Instead, a normal forms-based procedure is used, eliminating those contributions to the Sobolev energy that are of lower degree of homogeneity in the solution. Since the water waves equations form a quasi-linear system, the usual normal forms approaches would face the well-known problem of losses of derivatives in the unbounded transformations. To overcome this, after a paralinearization of the capillary-gravity water waves equations, we perform several paradifferential reductions to obtain a diagonal system with constant coefficient symbols, up to smoothing remainders. Then we start with a normal form procedure where the small divisors are compensated by the previous paradifferential regularization. The reversible structure of the water waves equations, and the fact that we seek solutions even in space, guarantees a key cancellation which prevents the growth of the Sobolev norms of the solutions.
Автор: Yulia Karpeshina, Roman Shterenberg Название: Extended States for the Schrodinger Operator with Quasi-Periodic Potential in Dimension Two ISBN: 1470435438 ISBN-13(EAN): 9781470435431 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 83160.00 T Наличие на складе: Невозможна поставка. Описание: Considers a Schrodinger operator $H=-\Delta +V(\vec x)$ in dimension two with a quasi-periodic potential $V(\vec x)$. The authors prove that the absolutely continuous spectrum of $H$ contains a semiaxis and there is a family of generalized eigenfunctions at every point of this semiaxis with the following properties.
Автор: Seshadev Padhi; John R. Graef; P. D. N. Srinivasu Название: Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics ISBN: 8132235428 ISBN-13(EAN): 9788132235422 Издательство: Springer Рейтинг: Цена: 88500.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Chapter 1. Introduction.- Chapter 2. Positive Periodic Solutions of Nonlinear Functional Differential Equations with Parameter λ.- Chapter 3. Multiple Periodic Solutions of a System of Functional Differential Equations.- Chapter 4. Multiple Periodic Solutions of Nonlinear Functional Differential Equations.- Chapter 5. Asymptotic Behavior of Periodic Solutions of Differential Equations of First Order.- Bibliography.
Автор: Marko Kostic Название: Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations ISBN: 3110641240 ISBN-13(EAN): 9783110641240 Издательство: Walter de Gruyter Цена: 140030.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book discusses almost periodic and almost automorphic solutions to abstract integro-differential Volterra equations that are degenerate in time, and in particular equations whose solutions are governed by (degenerate) solution operator families with removable singularities at zero. It particularly covers abstract fractional equations and inclusions with multivalued linear operators as well as abstract fractional semilinear Cauchy problems.
Автор: Hendrik W. Broer; George B. Huitema; Mikhail B. Se Название: Quasi-Periodic Motions in Families of Dynamical Systems ISBN: 3540620257 ISBN-13(EAN): 9783540620259 Издательство: Springer Рейтинг: Цена: 41880.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book is devoted to the phenomenon of quasi-periodic motion in dynamical systems. On the one hand, Hamiltonian systems occur that are in complete order: these are the integrable systems where all motion is confined to invariant tori.
Автор: Han-lin Chen Название: Complex Harmonic Splines, Periodic Quasi-Wavelets ISBN: 9401058431 ISBN-13(EAN): 9789401058438 Издательство: Springer Рейтинг: Цена: 46570.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book, written by our distinguished colleague and friend, Professor Han-Lin Chen of the Institute of Mathematics, Academia Sinica, Beijing, presents, for the first time in book form, his extensive work on complex harmonic splines with applications to wavelet analysis and the numerical solution of boundary integral equations.
Автор: P.H. Rabinowitz; A. Ambrosetti; I. Ekeland; E.J. Z Название: Periodic Solutions of Hamiltonian Systems and Related Topics ISBN: 9027725535 ISBN-13(EAN): 9789027725530 Издательство: Springer Рейтинг: Цена: 192860.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Proceedings of the NATO Advanced Research Workshop, Il Ciocco, Italy, October 13-17, 1986
Автор: Klein, Sebastian Название: Spectral theory for simply periodic solutions of the sinh-gordon equation ISBN: 3030012751 ISBN-13(EAN): 9783030012755 Издательство: Springer Рейтинг: Цена: 37260.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book develops a spectral theory for the integrable system of 2-dimensional, simply periodic, complex-valued solutions u of the sinh-Gordon equation. Such solutions (if real-valued) correspond to certain constant mean curvature surfaces in Euclidean 3-space. Spectral data for such solutions are defined (following ideas of Hitchin and Bobenko) and the space of spectral data is described by an asymptotic characterization. Using methods of asymptotic estimates, the inverse problem for the spectral data is solved along a line, i.e. the solution u is reconstructed on a line from the spectral data. Finally, a Jacobi variety and Abel map for the spectral curve are constructed and used to describe the change of the spectral data under translation of the solution u. The book's primary audience will be research mathematicians interested in the theory of infinite-dimensional integrable systems, or in the geometry of constant mean curvature surfaces.
Автор: A. Ambrosetti; V. Coti-Zelati Название: Periodic Solutions of Singular Lagrangian Systems ISBN: 0817636552 ISBN-13(EAN): 9780817636555 Издательство: Springer Рейтинг: Цена: 97820.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: A summary and synthesis of recent research demonstrating that variational methods can be used to successfully handle systems with singular potential, the Lagrangian systems. The classic cases of the Kepler problem and the N-body problem are used as specific examples.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz