Автор: Chriss, Neil Ginzburg, Victor Название: Representation theory and complex geometry ISBN: 0817649379 ISBN-13(EAN): 9780817649371 Издательство: Springer Рейтинг: Цена: 121110.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: "The book is largely self-contained...There is a nice introduction to symplectic geometry and a charming exposition of equivariant K-theory. This is the only available introduction to geometric representation theory...it has already proved successful in introducing a new generation to the subject."
Автор: Watrous, John (university Of Waterloo, Ontario) Название: The theory of quantum information ISBN: 1107180562 ISBN-13(EAN): 9781107180567 Издательство: Cambridge Academ Рейтинг: Цена: 77090.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Intended for graduate students and researchers, this book presents a formal development of the mathematical theory of quantum information. Largely self-contained, with clear proofs and a wide range of exercises, it will help the reader grasp the fundamental facts and techniques that form the mathematical foundations of the subject.
Автор: Lapidus Michel L., Frankenhuijsen Machiel van Название: Fractal Geometry, Complex Dimensions and Zeta Functions / Geometry and Spectra of Fractal Strings ISBN: 0387332855 ISBN-13(EAN): 9780387332857 Издательство: Springer Рейтинг: Цена: 49330.00 T Наличие на складе: Нет в наличии. Описание: Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary.Key Features: - The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal strings- Complex dimensions of a fractal string, defined as the poles of an associated zeta function, are studied in detail, then used to understand the oscillations intrinsic to the corresponding fractal geometries and frequency spectra- Explicit formulas are extended to apply to the geometric, spectral, and dynamic zeta functions associated with a fractal- Examples of such formulas include Prime Orbit Theorem with error term for self-similar flows, and a tube formula- The method of diophantine approximation is used to study self-similar strings and flows- Analytical and geometric methods are used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functionsThroughout new results are examined. The final chapter gives a new definition of fractality as the presence of nonreal complex dimensions with positive real parts.The significant studies and problems illuminated in this work may be used in a classroom setting at the graduate level. Fractal Geometry, Complex Dimensions and Zeta Functions will appeal to students and researchers in number theory, fractal geometry, dynamical systems, spectral geometry, and mathematical physics.
Автор: Siegel Название: Lectures on the Geometry of Numbers ISBN: 3540506292 ISBN-13(EAN): 9783540506294 Издательство: Springer Рейтинг: Цена: 55850.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Carl Ludwig Siegel gave a course of lectures on the Geometry of Numbers at New York University during the academic year 1945-46, when there were hardly any books on the subject other than Minkowski`s original one. This book offers an introduction to Minkowski`s work. It reveals the workings of a remarkable mind, such as Siegel`s.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz