Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Multi-Armed Bandits: Theory and Applications to Online Learning in Networks, Qing Zhao


Варианты приобретения
Цена: 67450.00T
Кол-во:
 о цене
Наличие: Отсутствует. 
Возможна поставка под заказ. Дата поступления на склад уточняется после оформления заказа


Добавить в корзину
в Мои желания

Автор: Qing Zhao
Название:  Multi-Armed Bandits: Theory and Applications to Online Learning in Networks
ISBN: 9781627056380
Издательство: Mare Nostrum (Eurospan)
Классификация:



ISBN-10: 1627056386
Обложка/Формат: Paperback
Страницы: 147
Вес: 0.29 кг.
Дата издания: 30.11.2019
Серия: Synthesis lectures on communication networks
Язык: English
Размер: 235 x 191 x 9
Читательская аудитория: Professional and scholarly
Ключевые слова: Artificial intelligence,Computer science,Information technology: general issues, COMPUTERS / General,COMPUTERS / Intelligence (AI) & Semantics,COMPUTERS / Computer Science
Подзаголовок: Theory and applications to online learning in networks
Рейтинг:
Поставляется из: Англии
Описание: Multi-armed bandit problems pertain to optimal sequential decision making and learning in unknown environments. Since the first bandit problem posed by Thompson in 1933 for the application of clinical trials, bandit problems have enjoyed lasting attention from multiple research communities and have found a wide range of applications across diverse domains. This book covers classic results and recent development on both Bayesian and frequentist bandit problems. We start in Chapter 1 with a brief overview on the history of bandit problems, contrasting the two schools—Bayesian and frequentis —of approaches and highlighting foundational results and key applications. Chapters 2 and 4 cover, respectively, the canonical Bayesian and frequentist bandit models. In Chapters 3 and 5, we discuss major variants of the canonical bandit models that lead to new directions, bring in new techniques, and broaden the applications of this classical problem. In Chapter 6, we present several representative application examples in communication networks and social-economic systems, aiming to illuminate the connections between the Bayesian and the frequentist formulations of bandit problems and how structural results pertaining to one may be leveraged to obtain solutions under the other.

Introduction to multi-armed bandits

Автор: Slivkins, Aleksandrs
Название: Introduction to multi-armed bandits
ISBN: 168083620X ISBN-13(EAN): 9781680836202
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 88710.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Provides a textbook like treatment of multi-armed bandits. The work on multi-armed bandits can be partitioned into a dozen or so directions. Each chapter tackles one line of work, providing a self-contained introduction and pointers for further reading.

Machine Learning and Cognitive Computing for Mobile Communications and Wireless Networks

Автор: Krishna Kant Singh, Akansha Singh, Korhan Cengiz,
Название: Machine Learning and Cognitive Computing for Mobile Communications and Wireless Networks
ISBN: 1119640369 ISBN-13(EAN): 9781119640363
Издательство: Wiley
Рейтинг:
Цена: 167850.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Communication and network technology has witnessed recent rapid development and numerous information services and applications have been developed globally. These technologies have high impact on society and the way people are leading their lives. The advancement in technology has undoubtedly improved the quality of service and user experience yet a lot needs to be still done. Some areas that still need improvement include seamless wide-area coverage, high-capacity hot-spots, low-power massive-connections, low-latency and high-reliability and so on. Thus, it is highly desirable to develop smart technologies for communication to improve the overall services and management of wireless communication. Machine learning and cognitive computing have converged to give some groundbreaking solutions for smart machines. With these two technologies coming together, the machines can acquire the ability to reason similar to the human brain. The research area of machine learning and cognitive computing cover many fields like psychology, biology, signal processing, physics, information theory, mathematics, and statistics that can be used effectively for topology management. Therefore, the utilization of machine learning techniques like data analytics and cognitive power will lead to better performance of communication and wireless systems.


Deep Learning Applications and Intelligent Decision Making in Engineering

Автор: Karthikrajan Senthilnathan, Balamurugan Shanmugam, Dinesh Goyal, Iyswarya Annapoorani, Ravi Samikannu
Название: Deep Learning Applications and Intelligent Decision Making in Engineering
ISBN: 1799821099 ISBN-13(EAN): 9781799821090
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 166320.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Provides practical applications of deep learning to improve decision-making methods and construct smart environments. Highlighting topics such as smart transportation, e-commerce, and cyber physical systems, this book is designed for engineers, computer scientists, programmers, software engineers, researchers, academics, and students.

Multi-Armed Bandits: Theory and Applications to Online Learning in Networks

Автор: Qing Zhao
Название: Multi-Armed Bandits: Theory and Applications to Online Learning in Networks
ISBN: 1681736373 ISBN-13(EAN): 9781681736372
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 87780.00 T
Наличие на складе: Нет в наличии.
Описание: Multi-armed bandit problems pertain to optimal sequential decision making and learning in unknown environments. Since the first bandit problem posed by Thompson in 1933 for the application of clinical trials, bandit problems have enjoyed lasting attention from multiple research communities and have found a wide range of applications across diverse domains. This book covers classic results and recent development on both Bayesian and frequentist bandit problems. We start in Chapter 1 with a brief overview on the history of bandit problems, contrasting the two schools—Bayesian and frequentis —of approaches and highlighting foundational results and key applications. Chapters 2 and 4 cover, respectively, the canonical Bayesian and frequentist bandit models. In Chapters 3 and 5, we discuss major variants of the canonical bandit models that lead to new directions, bring in new techniques, and broaden the applications of this classical problem. In Chapter 6, we present several representative application examples in communication networks and social-economic systems, aiming to illuminate the connections between the Bayesian and the frequentist formulations of bandit problems and how structural results pertaining to one may be leveraged to obtain solutions under the other.

Tensor Networks for Dimensionality Reduction and Large-Scale Optimization: Part 2 Applications and Future Perspectives

Автор: Cichocki Andrzej, Lee Namgil, Oseledets Ivan
Название: Tensor Networks for Dimensionality Reduction and Large-Scale Optimization: Part 2 Applications and Future Perspectives
ISBN: 168083276X ISBN-13(EAN): 9781680832761
Издательство: Неизвестно
Рейтинг:
Цена: 91040.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This monograph builds on Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions by discussing tensor network models for super-compressed higher-order representation of data/parameters and cost functions, together with an outline of their applications in machine learning and data analytics. A particular emphasis is on elucidating, through graphical illustrations, that by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volume of data/parameters, thereby alleviating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification, generalized eigenvalue decomposition and in the optimization of deep neural networks. The monograph focuses on tensor train (TT) and Hierarchical Tucker (HT) decompositions and their extensions, and on demonstrating the ability of tensor networks to provide scalable solutions for a variety of otherwise intractable large-scale optimization problems. Tensor Networks for Dimensionality Reduction and Large-scale Optimization Parts 1 and 2 can be used as stand-alone texts, or together as a comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions. See also: Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions. ISBN 978-1-68083-222-8

The Deep Learning with PyTorch Workshop: Build deep neural networks and artificial intelligence applications with PyTorch

Автор: Saleh Hyatt
Название: The Deep Learning with PyTorch Workshop: Build deep neural networks and artificial intelligence applications with PyTorch
ISBN: 1838989218 ISBN-13(EAN): 9781838989217
Издательство: Неизвестно
Рейтинг:
Цена: 47810.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Get a head start in the world of AI and deep learning by developing your skills with PyTorch

Key Features

  • Learn how to define your own network architecture in deep learning
  • Implement helpful methods to create and train a model using PyTorch syntax
  • Discover how intelligent applications using features like image recognition and speech recognition really process your data

Book Description

Want to get to grips with one of the most popular machine learning libraries for deep learning? The Deep Learning with PyTorch Workshop will help you do just that, jumpstarting your knowledge of using PyTorch for deep learning even if you're starting from scratch.

It's no surprise that deep learning's popularity has risen steeply in the past few years, thanks to intelligent applications such as self-driving vehicles, chatbots, and voice-activated assistants that are making our lives easier. This book will take you inside the world of deep learning, where you'll use PyTorch to understand the complexity of neural network architectures.

The Deep Learning with PyTorch Workshop starts with an introduction to deep learning and its applications. You'll explore the syntax of PyTorch and learn how to define a network architecture and train a model. Next, you'll learn about three main neural network architectures - convolutional, artificial, and recurrent - and even solve real-world data problems using these networks. Later chapters will show you how to create a style transfer model to develop a new image from two images, before finally taking you through how RNNs store memory to solve key data issues.

By the end of this book, you'll have mastered the essential concepts, tools, and libraries of PyTorch to develop your own deep neural networks and intelligent apps.

What you will learn

  • Explore the different applications of deep learning
  • Understand the PyTorch approach to building neural networks
  • Create and train your very own perceptron using PyTorch
  • Solve regression problems using artificial neural networks (ANNs)
  • Handle computer vision problems with convolutional neural networks (CNNs)
  • Perform language translation tasks using recurrent neural networks (RNNs)

Who this book is for

This deep learning book is ideal for anyone who wants to create and train deep learning models using PyTorch. A solid understanding of the Python programming language and its packages will help you grasp the topics covered in the book more quickly.


Machine Learning Applications in Non-Conventional Machining Processes

Автор: Goutam Kumar Bose, Pritam Pain
Название: Machine Learning Applications in Non-Conventional Machining Processes
ISBN: 1799836258 ISBN-13(EAN): 9781799836254
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 159850.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Traditional machining has many limitations in today's technology-driven world, which has caused industrial professionals to begin implementing various optimization techniques within their machining processes. The application of methods including machine learning and genetic algorithms has recently transformed the manufacturing industry and created countless opportunities in non-traditional machining methods. Significant research in this area, however, is still considerably lacking.

Machine Learning Applications in Non-Conventional Machining Processes is a collection of innovative research on the advancement of intelligent technology in industrial environments and its applications within the manufacturing field. While highlighting topics including evolutionary algorithms, micro-machining, and artificial neural networks, this book is ideally designed for researchers, academicians, engineers, managers, developers, practitioners, industrialists, and students seeking current research on intelligence-based machining processes in today's technology-driven market.

Machine Learning Applications in Non-Conventional Machining Processes

Автор: Goutam Kumar Bose, Pritam Pain
Название: Machine Learning Applications in Non-Conventional Machining Processes
ISBN: 179983624X ISBN-13(EAN): 9781799836247
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 206970.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Traditional machining has many limitations in today's technology-driven world, which has caused industrial professionals to begin implementing various optimization techniques within their machining processes. The application of methods including machine learning and genetic algorithms has recently transformed the manufacturing industry and created countless opportunities in non-traditional machining methods. Significant research in this area, however, is still considerably lacking.

Machine Learning Applications in Non-Conventional Machining Processes is a collection of innovative research on the advancement of intelligent technology in industrial environments and its applications within the manufacturing field. While highlighting topics including evolutionary algorithms, micro-machining, and artificial neural networks, this book is ideally designed for researchers, academicians, engineers, managers, developers, practitioners, industrialists, and students seeking current research on intelligence-based machining processes in today's technology-driven market.

Complex Networks & Their Applications V

Автор: Cherifi
Название: Complex Networks & Their Applications V
ISBN: 3319509004 ISBN-13(EAN): 9783319509006
Издательство: Springer
Рейтинг:
Цена: 307450.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book highlights cutting-edge research in the field of network science, offering scientists, researchers and graduate students a unique opportunity to catch up on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the fifth International Workshop on Complex Networks & their Applications (COMPLEX NETWORKS 2016), which took place in Milan during the last week of November 2016. The carefully selected papers are divided into 11 sections reflecting the diversity and richness of research areas in the field. More specifically, the following topics are covered: Network models; Network measures; Community structure; Network dynamics; Diffusion, epidemics and spreading processes; Resilience and control; Network visualization; Social and political networks; Networks in finance and economics; Biological and ecological networks; and Network analysis.

Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications

Название: Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications
ISBN: 1799804143 ISBN-13(EAN): 9781799804147
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 2494800.00 T
Наличие на складе: Нет в наличии.
Описание: Due to the growing use of web applications and communication devices, the use of data has increased throughout various industries. It is necessary to develop new techniques for managing data in order to ensure adequate usage. Deep learning, a subset of artificial intelligence and machine learning, has been recognized in various real-world applications such as computer vision, image processing, and pattern recognition. The deep learning approach has opened new opportunities that can make such real-life applications and tasks easier and more efficient. Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications is a vital reference source that trends in data analytics and potential technologies that will facilitate insight in various domains of science, industry, business, and consumer applications. It also explores the latest concepts, algorithms, and techniques of deep learning and data mining and analysis. Highlighting a range of topics such as natural language processing, predictive analytics, and deep neural networks, this multi-volume book is ideally designed for computer engineers, software developers, IT professionals, academicians, researchers, and upper-level students seeking current research on the latest trends in the field of deep learning.

Deep Learning For Eeg-based Brain-computer Interfaces: Representations, Algorithms And Applications

Автор: Lina Yao, Xiang Zhang
Название: Deep Learning For Eeg-based Brain-computer Interfaces: Representations, Algorithms And Applications
ISBN: 1786349582 ISBN-13(EAN): 9781786349583
Издательство: World Scientific Publishing
Рейтинг:
Цена: 95040.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Deep Learning for EEG-based Brain-Computer Interfaces is an exciting book that describes how emerging deep learning improves the future development of Brain-Computer Interfaces (BCI).

Complex Networks and Their Applications VII

Автор: Luca Maria Aiello; Chantal Cherifi; Hocine Cherifi
Название: Complex Networks and Their Applications VII
ISBN: 3030054101 ISBN-13(EAN): 9783030054106
Издательство: Springer
Рейтинг:
Цена: 204970.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students and practitioners a unique update on the latest advances in theory, together with a wealth of applications. It presents the peer-reviewed proceedings of the VII International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2018), which was held in Cambridge on December 11–13, 2018. The carefully selected papers cover a wide range of theoretical topics such as network models and measures; community structure and network dynamics; diffusion, epidemics and spreading processes; and resilience and control; as well as all the main network applications, including social and political networks; networks in finance and economics; biological and neuroscience networks; and technological networks.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия