Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Evolutionary Machine Learning Techniques, Seyedali Mirjalili; Hossam Faris; Ibrahim Aljarah


Варианты приобретения
Цена: 167700.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 185 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Seyedali Mirjalili; Hossam Faris; Ibrahim Aljarah
Название:  Evolutionary Machine Learning Techniques
ISBN: 9789813299894
Издательство: Springer
Классификация:



ISBN-10: 9813299894
Обложка/Формат: Hardcover
Страницы: 286
Вес: 0.61 кг.
Дата издания: 2020
Серия: Algorithms for Intelligent Systems
Язык: English
Издание: 1st ed. 2020
Иллюстрации: 20 tables, color; 55 illustrations, color; 17 illustrations, black and white; x, 286 p. 72 illus., 55 illus. in color.
Размер: 234 x 156 x 18
Читательская аудитория: Professional & vocational
Основная тема: Engineering
Подзаголовок: Algorithms and Applications
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание:
This book provides an in-depth analysis of the current evolutionary machine learning techniques. Discussing the most highly regarded methods for classification, clustering, regression, and prediction, it includes techniques such as support vector machines, extreme learning machines, evolutionary feature selection, artificial neural networks including feed-forward neural networks, multi-layer perceptron, probabilistic neural networks, self-optimizing neural networks, radial basis function networks, recurrent neural networks, spiking neural networks, neuro-fuzzy networks, modular neural networks, physical neural networks, and deep neural networks. The book provides essential definitions, literature reviews, and the training algorithms for machine learning using classical and modern nature-inspired techniques. It also investigates the pros and cons of classical training algorithms. It features a range of proven and recent nature-inspired algorithms used to train different types of artificial neural networks, including genetic algorithm, ant colony optimization, particle swarm optimization, grey wolf optimizer, whale optimization algorithm, ant lion optimizer, moth flame algorithm, dragonfly algorithm, salp swarm algorithm, multi-verse optimizer, and sine cosine algorithm. The book also covers applications of the improved artificial neural networks to solve classification, clustering, prediction and regression problems in diverse fields.

Дополнительное описание:



Pattern Recognition and Machine Learning

Автор: Christopher M. Bishop
Название: Pattern Recognition and Machine Learning
ISBN: 0387310738 ISBN-13(EAN): 9780387310732
Издательство: Springer
Рейтинг:
Цена: 79190.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Computer Age Statistical Inference

Автор: Bradley Efron and Trevor Hastie
Название: Computer Age Statistical Inference
ISBN: 1107149894 ISBN-13(EAN): 9781107149892
Издательство: Cambridge Academ
Рейтинг:
Цена: 60190.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

Analog Circuits and Systems Optimization based on Evolutionary Computation Techniques

Автор: Manuel Barros; Jorge Guilherme; Nuno Horta
Название: Analog Circuits and Systems Optimization based on Evolutionary Computation Techniques
ISBN: 3642123457 ISBN-13(EAN): 9783642123450
Издательство: Springer
Рейтинг:
Цена: 158380.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Transistor-level design for complex mixed-signal systems-on-chip remains difficult to automate. This book shows how a modified genetic algorithm kernel can improve efficiency in the analog IC design cycle and includes a worked example of the method.

Analog Circuits and Systems Optimization based on Evolutionary Computation Techniques

Автор: Manuel Barros; Jorge Guilherme; Nuno Horta
Название: Analog Circuits and Systems Optimization based on Evolutionary Computation Techniques
ISBN: 3642263232 ISBN-13(EAN): 9783642263231
Издательство: Springer
Рейтинг:
Цена: 158380.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Transistor-level design for complex mixed-signal systems-on-chip remains difficult to automate. This book shows how a modified genetic algorithm kernel can improve efficiency in the analog IC design cycle and includes a worked example of the method.

Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics

Автор: Clara Pizzuti; Marylyn D. Ritchie; Mario Giacobini
Название: Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics
ISBN: 3642011837 ISBN-13(EAN): 9783642011832
Издательство: Springer
Рейтинг:
Цена: 65210.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Constitutes the refereed proceedings of the 7th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, EvoBIO 2009, held in Tubingen, Germany, in April 2009 co located with the Evo 2009 events. This book includes such topics as biomarker discovery, cell simulation and modeling, and ecological modeling.

Evolutionary Computation Techniques: A Comparative Perspective

Автор: Cuevas, Erik, Osuna, Valentin, Oliva, Diego
Название: Evolutionary Computation Techniques: A Comparative Perspective
ISBN: 3319511084 ISBN-13(EAN): 9783319511085
Издательство: Springer
Рейтинг:
Цена: 130430.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book compares the performance of various evolutionary computation (EC) techniques when they are faced with complex optimization problems extracted from different engineering domains.

Evolutionary approach to machine learning and deep neural networks.

Название: Evolutionary approach to machine learning and deep neural networks.
ISBN: 9811301999 ISBN-13(EAN): 9789811301995
Издательство: Springer
Рейтинг:
Цена: 139750.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book provides theoretical and practical knowledge about a methodology for evolutionary algorithm-based search strategy with the integration of several machine learning and deep learning techniques. These include convolutional neural networks, Gr?bner bases, relevance vector machines, transfer learning, bagging and boosting methods, clustering techniques (affinity propagation), and belief networks, among others. The development of such tools contributes to better optimizing methodologies. Beginning with the essentials of evolutionary algorithms and covering interdisciplinary research topics, the contents of this book are valuable for different classes of readers: novice, intermediate, and also expert readers from related fields.Following the chapters on introduction and basic methods, Chapter 3 details a new research direction, i.e., neuro-evolution, an evolutionary method for the generation of deep neural networks, and also describes how evolutionary methods are extended in combination with machine learning techniques. Chapter 4 includes novel methods such as particle swarm optimization based on affinity propagation (PSOAP), and transfer learning for differential evolution (TRADE), another machine learning approach for extending differential evolution.The last chapter is dedicated to the state of the art in gene regulatory network (GRN) research as one of the most interesting and active research fields. The author describes an evolving reaction network, which expands the neuro-evolution methodology to produce a type of genetic network suitable for biochemical systems and has succeeded in designing genetic circuits in synthetic biology. The author also presents real-world GRN application to several artificial intelligent tasks, proposing a framework of motion generation by GRNs (MONGERN), which evolves GRNs to operate a real humanoid robot.

Finite-State Techniques: Automata, Transducers and Bimachines

Автор: Stoyan Mihov, Klaus U. Schulz
Название: Finite-State Techniques: Automata, Transducers and Bimachines
ISBN: 1108485413 ISBN-13(EAN): 9781108485418
Издательство: Cambridge Academ
Рейтинг:
Цена: 70740.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This text for graduate students and researchers gives a complete coverage of the field with mathematical rigour, from basics to advanced topics. It closes the gap between theory and real practice by providing full proofs and executable code for all algorithms, showcasing the efficient and elegant solutions that finite-state methods offer.

Thinking Like a Machine: An Artists Journey Into Robotics

Автор: Niki Passath
Название: Thinking Like a Machine: An Artists Journey Into Robotics
ISBN: 3110542552 ISBN-13(EAN): 9783110542554
Издательство: Walter de Gruyter
Рейтинг:
Цена: 61920.00 T
Наличие на складе: Невозможна поставка.
Описание: In many modes of behavior, people act more and more like machines. With his created robotic beings, Niki Passath breaks with this seemingly rational technological system. By eliminating the predominant rationality of the machine, he gives it a new meaning.

Machine Learning in Python: Hands on Machine Learning with Python Tools, Concepts and Techniques

Автор: Mather Bob
Название: Machine Learning in Python: Hands on Machine Learning with Python Tools, Concepts and Techniques
ISBN: 1922300950 ISBN-13(EAN): 9781922300959
Издательство: Неизвестно
Рейтинг:
Цена: 40450.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The ability to crunch data effectively can propel your career or business to great heights. Machine Learning is the most effective data analysis tool. While it is a complex topic, it can be broken down into simpler steps, as show in this book. We are using Python, which is a great programming language for beginners.

Evolutionary Approach to Machine Learning and Deep Neural Networks

Автор: Hitoshi Iba
Название: Evolutionary Approach to Machine Learning and Deep Neural Networks
ISBN: 9811343586 ISBN-13(EAN): 9789811343582
Издательство: Springer
Рейтинг:
Цена: 139750.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book provides theoretical and practical knowledge about a methodology for evolutionary algorithm-based search strategy with the integration of several machine learning and deep learning techniques. These include convolutional neural networks, Gr?bner bases, relevance vector machines, transfer learning, bagging and boosting methods, clustering techniques (affinity propagation), and belief networks, among others. The development of such tools contributes to better optimizing methodologies. Beginning with the essentials of evolutionary algorithms and covering interdisciplinary research topics, the contents of this book are valuable for different classes of readers: novice, intermediate, and also expert readers from related fields.Following the chapters on introduction and basic methods, Chapter 3 details a new research direction, i.e., neuro-evolution, an evolutionary method for the generation of deep neural networks, and also describes how evolutionary methods are extended in combination with machine learning techniques. Chapter 4 includes novel methods such as particle swarm optimization based on affinity propagation (PSOAP), and transfer learning for differential evolution (TRADE), another machine learning approach for extending differential evolution.The last chapter is dedicated to the state of the art in gene regulatory network (GRN) research as one of the most interesting and active research fields. The author describes an evolving reaction network, which expands the neuro-evolution methodology to produce a type of genetic network suitable for biochemical systems and has succeeded in designing genetic circuits in synthetic biology. The author also presents real-world GRN application to several artificial intelligent tasks, proposing a framework of motion generation by GRNs (MONGERN), which evolves GRNs to operate a real humanoid robot.

An Introduction to Machine Learning

Автор: Miroslav Kubat
Название: An Introduction to Machine Learning
ISBN: 3319348868 ISBN-13(EAN): 9783319348865
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents basic ideas of machine learning in a way that is easy to understand, by providing hands-on practical advice, using simple examples, and motivating students with discussions of interesting applications.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия