Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Machine Learning Paradigms: Theory and Application, Aboul Ella Hassanien


Варианты приобретения
Цена: 149060.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 184 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Aboul Ella Hassanien
Название:  Machine Learning Paradigms: Theory and Application
ISBN: 9783030023560
Издательство: Springer
Классификация:



ISBN-10: 3030023567
Обложка/Формат: Hardcover
Страницы: 474
Вес: 0.89 кг.
Дата издания: 2019
Серия: Studies in Computational Intelligence
Язык: English
Издание: 1st ed. 2019
Иллюстрации: 152 illustrations, color; 90 illustrations, black and white; ix, 474 p. 242 illus., 152 illus. in color.
Размер: 234 x 156 x 27
Читательская аудитория: Professional & vocational
Основная тема: Engineering
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание:
The book focuses on machine learning. Divided into three parts, the first part discusses the feature selection problem. The second part then describes the application of machine learning in the classification problem, while the third part presents an overview of real-world applications of swarm-based optimization algorithms.
The concept of machine learning (ML) is not new in the field of computing. However, due to the ever-changing nature of requirements in today’s world it has emerged in the form of completely new avatars. Now everyone is talking about ML-based solution strategies for a given problem set. The book includes research articles and expository papers on the theory and algorithms of machine learning and bio-inspiring optimization, as well as papers on numerical experiments and real-world applications.

Дополнительное описание: Part I: Machine Learning in Feature Selection.- Hybrid Feature Selection Method Based On The Genetic Algorithm And Pearson Correlation Coe?cient.- Weighting Attributes and Decision Rules through Rankings and Discretisation Parameters.- Greedy Selection o


Linear Algebra and Learning from Data

Автор: Strang Gilbert
Название: Linear Algebra and Learning from Data
ISBN: 0692196382 ISBN-13(EAN): 9780692196380
Издательство: Cambridge Academ
Рейтинг:
Цена: 66520.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation.

Machine Learning

Автор: Kevin Murphy
Название: Machine Learning
ISBN: 0262018020 ISBN-13(EAN): 9780262018029
Издательство: MIT Press
Рейтинг:
Цена: 124150.00 T
Наличие на складе: Невозможна поставка.
Описание:

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.

Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.

The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package -- PMTK (probabilistic modeling toolkit) -- that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.


Emerging Paradigms in Machine Learning

Автор: Sheela Ramanna; Lakhmi C Jain; Robert J. Howlett
Название: Emerging Paradigms in Machine Learning
ISBN: 3642435742 ISBN-13(EAN): 9783642435744
Издательство: Springer
Рейтинг:
Цена: 139310.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Covering state-of-the-art and emerging paradigms in machine learning, and featuring a number of real-world applications, this book also presents key topics and algorithms that form the core of machine learning (ML) research, including granular computing.

Machine Learning Paradigms

Автор: George A. Tsihrintzis; Dionisios N. Sotiropoulos;
Название: Machine Learning Paradigms
ISBN: 3030067777 ISBN-13(EAN): 9783030067779
Издательство: Springer
Рейтинг:
Цена: 158380.00 T
Наличие на складе: Поставка под заказ.
Описание: This book explores some of the emerging scientific and technological areas in which the need for data analytics arises and is likely to play a significant role in the years to come. At the dawn of the 4th Industrial Revolution, data analytics is emerging as a force that drives towards dramatic changes in our daily lives, the workplace and human relationships. Synergies between physical, digital, biological and energy sciences and technologies, brought together by non-traditional data collection and analysis, drive the digital economy at all levels and offer new, previously-unavailable opportunities.The need for data analytics arises in most modern scientific disciplines, including engineering; natural-, computer- and information sciences; economics; business; commerce; environment; healthcare; and life sciences.Coming as the third volume under the general title MACHINE LEARNING PARADIGMS, the book includes an editorial note (Chapter 1) and an additional 12 chapters, and is divided into five parts: (1) Data Analytics in the Medical, Biological and Signal Sciences, (2) Data Analytics in Social Studies and Social Interactions, (3) Data Analytics in Traffic, Computer and Power Networks, (4) Data Analytics for Digital Forensics, and (5) Theoretical Advances and Tools for Data Analytics.This research book is intended for both experts/researchers in the field of data analytics, and readers working in the fields of artificial and computational intelligence as well as computer science in general who wish to learn more about the field of data analytics and its applications. An extensive list of bibliographic references at the end of each chapter guides readers to probe further into the application areas of interest to them.

An Introduction to Machine Learning

Автор: Miroslav Kubat
Название: An Introduction to Machine Learning
ISBN: 3319348868 ISBN-13(EAN): 9783319348865
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents basic ideas of machine learning in a way that is easy to understand, by providing hands-on practical advice, using simple examples, and motivating students with discussions of interesting applications.

Python machine learning -

Автор: Raschka, Sebastian Mirjalili, Vahid
Название: Python machine learning -
ISBN: 1787125939 ISBN-13(EAN): 9781787125933
Издательство: Неизвестно
Цена: 53940.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This second edition of Python Machine Learning by Sebastian Raschka is for developers and data scientists looking for a practical approach to machine learning and deep learning. In this updated edition, you`ll explore the machine learning process using Python and the latest open source technologies, including scikit-learn and TensorFlow 1.x.

Application of FPGA to Real?Time Machine Learning

Автор: Antonik
Название: Application of FPGA to Real?Time Machine Learning
ISBN: 3319910523 ISBN-13(EAN): 9783319910529
Издательство: Springer
Рейтинг:
Цена: 102480.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Introduction.- Online Training of a Photonic Reservoir Computer.- Backpropagation with Photonics.- Photonic Reservoir Computer with Output Feedback.- Towards Online-Trained Analogue Readout Layer.- Real-Time Automated Tissue Characterisation for Intravascular OCT Scans.- Conclusion and Perspectives.


Application of FPGA to Real?Time Machine Learning

Автор: Piotr Antonik
Название: Application of FPGA to Real?Time Machine Learning
ISBN: 3030081648 ISBN-13(EAN): 9783030081645
Издательство: Springer
Рейтинг:
Цена: 102480.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

This book lies at the interface of machine learning – a subfield of computer science that develops algorithms for challenging tasks such as shape or image recognition, where traditional algorithms fail – and photonics – the physical science of light, which underlies many of the optical communications technologies used in our information society. It provides a thorough introduction to reservoir computing and field-programmable gate arrays (FPGAs).
Recently, photonic implementations of reservoir computing (a machine learning algorithm based on artificial neural networks) have made a breakthrough in optical computing possible. In this book, the author pushes the performance of these systems significantly beyond what was achieved before. By interfacing a photonic reservoir computer with a high-speed electronic device (an FPGA), the author successfully interacts with the reservoir computer in real time, allowing him to considerably expand its capabilities and range of possible applications. Furthermore, the author draws on his expertise in machine learning and FPGA programming to make progress on a very different problem, namely the real-time image analysis of optical coherence tomography for atherosclerotic arteries.

Machine Learning Paradigms

Автор: Dionisios N. Sotiropoulos; George A. Tsihrintzis
Название: Machine Learning Paradigms
ISBN: 3319471929 ISBN-13(EAN): 9783319471921
Издательство: Springer
Рейтинг:
Цена: 139750.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The topic of this monograph falls within the, so-called, biologically motivated computing paradigm, in which biology provides the source of models and inspiration towards the development of computational intelligence and machine learning systems. Specifically, artificial immune systems are presented as a valid metaphor towards the creation of abstract and high level representations of biological components or functions that lay the foundations for an alternative machine learning paradigm. Therefore, focus is given on addressing the primary problems of Pattern Recognition by developing Artificial Immune System-based machine learning algorithms for the problems of Clustering, Classification and One-Class Classification. Pattern Classification, in particular, is studied within the context of the Class Imbalance Problem. The main source of inspiration stems from the fact that the Adaptive Immune System constitutes one of the most sophisticated biological systems that is exceptionally evolved in order to continuously address an extremely unbalanced pattern classification problem, namely, the self / non-self discrimination process. The experimental results presented in this monograph involve a wide range of degenerate binary classification problems where the minority class of interest is to be recognized against the vast volume of the majority class of negative patterns. In this context, Artificial Immune Systems are utilized for the development of personalized software as the core mechanism behind the implementation of Recommender Systems.The book will be useful to researchers, practitioners and graduate students dealing with Pattern Recognition and Machine Learning and their applications in Personalized Software and Recommender Systems. It is intended for both the expert/researcher in these fields, as well as for the general reader in the field of Computational Intelligence and, more generally, Computer Science who wishes to learn more about the field of Intelligent Computing Systems and its applications. An extensive list of bibliographic references at the end of each chapter guides the reader to probe further into application area of interest to him/her.

Machine Learning Paradigms

Автор: Aristomenis S. Lampropoulos; George A. Tsihrintzis
Название: Machine Learning Paradigms
ISBN: 3319384961 ISBN-13(EAN): 9783319384962
Издательство: Springer
Рейтинг:
Цена: 87060.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This timely book presents Applications in Recommender Systems which are making recommendations using machine learning algorithms trained via examples of content the user likes or dislikes.

Machine Learning Paradigms

Автор: Aristomenis S. Lampropoulos; George A. Tsihrintzis
Название: Machine Learning Paradigms
ISBN: 3319191349 ISBN-13(EAN): 9783319191348
Издательство: Springer
Рейтинг:
Цена: 104480.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This timely book presents Applications in Recommender Systems which are making recommendations using machine learning algorithms trained via examples of content the user likes or dislikes.

Machine Learning Paradigms

Автор: Tsihrintzis
Название: Machine Learning Paradigms
ISBN: 3319940295 ISBN-13(EAN): 9783319940298
Издательство: Springer
Рейтинг:
Цена: 158380.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Data Analytics in the Medical, Biological and Signal Sciences.- Recommender System of Medical Reports Leveraging Cognitive Computing and Frame Semantics.- Classification Methods in Image Analysis with a Special Focus on Medical Analytics.- Medical Data Mining for Heart Diseases and the Future of Sequential Mining in Medical Field.- Machine Learning Methods for the Protein Fold Recognition Problem.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия