Meshfree Methods for Partial Differential Equations IX, Michael Griebel; Marc Alexander Schweitzer
Автор: Michael Griebel; Marc Alexander Schweitzer Название: Meshfree Methods for Partial Differential Equations VII ISBN: 331938290X ISBN-13(EAN): 9783319382906 Издательство: Springer Рейтинг: Цена: 111790.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Meshfree methods, particle methods, and generalized finite element methods have witnessed substantial development since the mid 1990s. For instance, meshfree methods can be viewed as a natural extension of classical finite element and finite difference methods to scattered node configurations with no fixed connectivity.
Автор: Michael Griebel; Marc Alexander Schweitzer Название: Meshfree Methods for Partial Differential Equations VIII ISBN: 3319519530 ISBN-13(EAN): 9783319519531 Издательство: Springer Рейтинг: Цена: 139750.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: There have been substantial developments in meshfree methods, particle methods, and generalized finite element methods since the mid 1990s. For instance, meshfree methods can be viewed as a natural extension of classical finite element and finite difference methods to scattered node configurations with no fixed connectivity.
Автор: Michael Griebel; Marc Alexander Schweitzer Название: Meshfree Methods for Partial Differential Equations VI ISBN: 3642429777 ISBN-13(EAN): 9783642429774 Издательство: Springer Рейтинг: Цена: 130430.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Meshfree methods are a modern alternative to classical mesh-based discretization techniques such as finite differences or finite element methods. This volume collects selected papers presented at the Sixth International Workshop on Meshfree Methods held in Bonn, Germany in October 2011.
Автор: Michael Griebel; Marc Alexander Schweitzer Название: Meshfree Methods for Partial Differential Equations V ISBN: 3642265839 ISBN-13(EAN): 9783642265839 Издательство: Springer Рейтинг: Цена: 93160.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: The numerical treatment of partial differential equations with particle methods and meshfree discretization techniques is an extremely active research field, both in the mathematics and engineering communities.
Автор: Michael Griebel; Marc Alexander Schweitzer Название: Meshfree Methods for Partial Differential Equations VII ISBN: 3319068970 ISBN-13(EAN): 9783319068978 Издательство: Springer Рейтинг: Цена: 130430.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Meshfree methods, particle methods, and generalized finite element methods have witnessed substantial development since the mid 1990s. For instance, meshfree methods can be viewed as a natural extension of classical finite element and finite difference methods to scattered node configurations with no fixed connectivity.
Автор: Michael Griebel; Marc Alexander Schweitzer Название: Meshfree Methods for Partial Differential Equations IV ISBN: 3540799931 ISBN-13(EAN): 9783540799931 Издательство: Springer Рейтинг: Цена: 102480.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: The numerical treatment of partial differential equations with particle methods and meshfree discretization techniques is a active research field both in the mathematics and engineering community. This volume of LNCSE is a collection of the proceedings papers of the Fourth International Workshop on Meshfree Methods held in September 2007 in Bonn.
Автор: Ahmad Shair Название: Textbook on Ordinary Differential Equations ISBN: 3319164074 ISBN-13(EAN): 9783319164076 Издательство: Springer Рейтинг: Цена: 46570.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: The second edition has been revised to correct minor errata, and features a number of carefully selected new exercises, together with more detailed explanations of some of the topics. A complete Solutions Manual, containing solutions to all the exercises published in the book, is available.
Автор: G.R. Liu; Y.T. Gu Название: An Introduction to Meshfree Methods and Their Programming ISBN: 9048168198 ISBN-13(EAN): 9789048168194 Издательство: Springer Рейтинг: Цена: 148010.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Mesh Free Methods, Moving Beyond the Finite Element Method d by GR Liu (2002) provides a systematic discussion on basic theories, fundamentals for MFree methods, especially on MFree weak-form methods.
Автор: V.M.A. Leitao; C.J.S. Alves; C. Armando Duarte Название: Advances in Meshfree Techniques ISBN: 904817533X ISBN-13(EAN): 9789048175338 Издательство: Springer Рейтинг: Цена: 172350.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: The book collects extended original contributions presented at the first ECCOMAS Conference on Meshless Methods held in 2005 in Lisbon. The material presented is appropriate for researchers, engineers, physicists, applied mathematicians and graduate students interested in this active research area.
Автор: Randall LeVeque Название: Finite Difference Methods for Ordinary and Partial Differential Equations ISBN: 0898716292 ISBN-13(EAN): 9780898716290 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 67710.00 T Наличие на складе: Нет в наличии. Описание: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples. Exercises and student projects are available on the book’s webpage, along with Matlab mfiles for implementing methods. Readers will gain an understanding of the essential ideas that underlie the development, analysis, and practical use of finite difference methods as well as the key concepts of stability theory, their relation to one another, and their practical implications. The author provides a foundation from which students can approach more advanced topics.
Автор: Marcelo R. Ebert; Michael Reissig Название: Methods for Partial Differential Equations ISBN: 3319664557 ISBN-13(EAN): 9783319664552 Издательство: Springer Рейтинг: Цена: 79190.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book provides an overview of different topics related to the theory of partial differential equations. Selected exercises are included at the end of each chapter to prepare readers for the “research project for beginners” proposed at the end of the book. It is a valuable resource for advanced graduates and undergraduate students who are interested in specializing in this area.The book is organized in five parts:In Part 1 the authors review the basics and the mathematical prerequisites, presenting two of the most fundamental results in the theory of partial differential equations: the Cauchy-Kovalevskaja theorem and Holmgren's uniqueness theorem in its classical and abstract form. It also introduces the method of characteristics in detail and applies this method to the study of Burger's equation.Part 2 focuses on qualitative properties of solutions to basic partial differential equations, explaining the usual properties of solutions to elliptic, parabolic and hyperbolic equations for the archetypes Laplace equation, heat equation and wave equation as well as the different features of each theory. It also discusses the notion of energy of solutions, a highly effective tool for the treatment of non-stationary or evolution models and shows how to define energies for different models.Part 3 demonstrates how phase space analysis and interpolation techniques are used to prove decay estimates for solutions on and away from the conjugate line. It also examines how terms of lower order (mass or dissipation) or additional regularity of the data may influence expected results.Part 4 addresses semilinear models with power type non-linearity of source and absorbing type in order to determine critical exponents: two well-known critical exponents, the Fujita exponent and the Strauss exponent come into play. Depending on concrete models these critical exponents divide the range of admissible powers in classes which make it possible to prove quite different qualitative properties of solutions, for example, the stability of the zero solution or blow-up behavior of local (in time) solutions. The last part features selected research projects and general background material.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz