Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Bayesian Optimization and Data Science, Francesco Archetti; Antonio Candelieri


Варианты приобретения
Цена: 46570.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 228 шт.  
При оформлении заказа до: 2025-08-18
Ориентировочная дата поставки: конец Сентября - начало Октября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Francesco Archetti; Antonio Candelieri
Название:  Bayesian Optimization and Data Science
ISBN: 9783030244934
Издательство: Springer
Классификация:




ISBN-10: 3030244938
Обложка/Формат: Soft cover
Страницы: 126
Вес: 0.23 кг.
Дата издания: 2019
Серия: SpringerBriefs in Optimization
Язык: English
Издание: 1st ed. 2019
Иллюстрации: 40 illustrations, color; 11 illustrations, black and white; xiii, 128 p. 51 illus., 40 illus. in color.
Размер: 234 x 156 x 8
Читательская аудитория: Professional & vocational
Основная тема: Mathematics
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This volume brings together the main results in the field of Bayesian Optimization (BO), focusing on the last ten years and showing how, on the basic framework, new methods have been specialized to solve emerging problems from machine learning, artificial intelligence, and system optimization. It also analyzes the software resources available for BO and a few selected application areas. Some areas for which new results are shown include constrained optimization, safe optimization, and applied mathematics, specifically BOs use in solving difficult nonlinear mixed integer problems. The book will help bring readers to a full understanding of the basic Bayesian Optimization framework and gain an appreciation of its potential for emerging application areas. It will be of particular interest to the data science, computer science, optimization, and engineering communities.
Дополнительное описание: 1. Automated Machine Learning and Bayesian Optimization.- 2. From Global Optimization to Optimal Learning.- 3. The Surrogate Model.- 4. The Acquisition Function.- 5. Exotic BO.- 6. Software Resources.- 7. Selected Applications.


Handbook on Semidefinite, Conic and Polynomial Optimization

Автор: Anjos
Название: Handbook on Semidefinite, Conic and Polynomial Optimization
ISBN: 1461407680 ISBN-13(EAN): 9781461407683
Издательство: Springer
Рейтинг:
Цена: 163040.00 T
Наличие на складе: Есть
Описание: Semidefinite and conic optimization is a major and thriving research area within the optimization community. Although semidefinite optimization has been studied (under different names) since at least the 1940s, its importance grew immensely during the 1990s after polynomial-time interior-point methods for linear optimization were extended to solve semidefinite optimization problems. Since the beginning of the 21st century, not only has research into semidefinite and conic optimization continued unabated, but also a fruitful interaction has developed with algebraic geometry through the close connections between semidefinite matrices and polynomial optimization. This has brought about important new results and led to an even higher level of research activity. This Handbook on Semidefinite, Conic and Polynomial Optimization provides the reader with a snapshot of the state-of-the-art in the growing and mutually enriching areas of semidefinite optimization, conic optimization, and polynomial optimization. It contains a compendium of the recent research activity that has taken place in these thrilling areas, and will appeal to doctoral students, young graduates, and experienced researchers alike. The Handbook’s thirty-one chapters are organized into four parts:Theory, covering significant theoretical developments as well as the interactions between conic optimization and polynomial optimization;Algorithms, documenting the directions of current algorithmic development;Software, providing an overview of the state-of-the-art;Applications, dealing with the application areas where semidefinite and conic optimization has made a significant impact in recent years.

Tensor Networks for Dimensionality Reduction and Large-Scale Optimization: Part 2 Applications and Future Perspectives

Автор: Cichocki Andrzej, Lee Namgil, Oseledets Ivan
Название: Tensor Networks for Dimensionality Reduction and Large-Scale Optimization: Part 2 Applications and Future Perspectives
ISBN: 168083276X ISBN-13(EAN): 9781680832761
Издательство: Неизвестно
Рейтинг:
Цена: 91040.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This monograph builds on Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions by discussing tensor network models for super-compressed higher-order representation of data/parameters and cost functions, together with an outline of their applications in machine learning and data analytics. A particular emphasis is on elucidating, through graphical illustrations, that by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volume of data/parameters, thereby alleviating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification, generalized eigenvalue decomposition and in the optimization of deep neural networks. The monograph focuses on tensor train (TT) and Hierarchical Tucker (HT) decompositions and their extensions, and on demonstrating the ability of tensor networks to provide scalable solutions for a variety of otherwise intractable large-scale optimization problems. Tensor Networks for Dimensionality Reduction and Large-scale Optimization Parts 1 and 2 can be used as stand-alone texts, or together as a comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions. See also: Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions. ISBN 978-1-68083-222-8

Practical Mathematical Optimization

Автор: Snyman, Jan A, Wilke, Daniel N
Название: Practical Mathematical Optimization
ISBN: 3319775855 ISBN-13(EAN): 9783319775852
Издательство: Springer
Рейтинг:
Цена: 74530.00 T
Наличие на складе: Нет в наличии.
Описание: This book presents basic optimization principles and gradient-based algorithms to a general audience, in a brief and easy-to-read form. It enables professionals to apply optimization theory to engineering, physics, chemistry, or business economics.

Optimization using evolutionary algorithms and metaheuristics

Автор: Kaushik Kumar and J. Paulo Davim
Название: Optimization using evolutionary algorithms and metaheuristics
ISBN: 0367260441 ISBN-13(EAN): 9780367260446
Издательство: Taylor&Francis
Рейтинг:
Цена: 168430.00 T
Наличие на складе: Нет в наличии.
Описание: This book covers developments and advances of algorithm based optimization techniques These techniques were only used for non-engineering problems. This book applies them to engineering problems.

Convex Optimization: Algorithms and Complexity

Автор: Sebastian Bubeck.
Название: Convex Optimization: Algorithms and Complexity
ISBN: 1601988605 ISBN-13(EAN): 9781601988607
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 84090.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Presents the main complexity theorems in convex optimization and their corresponding algorithms. The book begins with the fundamental theory of black-box optimization and proceeds to guide the reader through recent advances in structural optimization and stochastic optimization.

Introduction to Applied Linear Algebra

Автор: Boyd Stephen
Название: Introduction to Applied Linear Algebra
ISBN: 1316518965 ISBN-13(EAN): 9781316518960
Издательство: Cambridge Academ
Рейтинг:
Цена: 45410.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A groundbreaking introductory textbook covering the linear algebra methods needed for data science and engineering applications. It combines straightforward explanations with numerous practical examples and exercises from data science, machine learning and artificial intelligence, signal and image processing, navigation, control, and finance.

Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control

Автор: Steven L. Brunton, J. Nathan Kutz
Название: Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
ISBN: 1108422098 ISBN-13(EAN): 9781108422093
Издательство: Amazon Internet
Рейтинг:
Цена: 0.00 T
Наличие на складе: Невозможна поставка.
Описание: Data-driven discovery is revolutionizing the modeling, prediction, and control of complex systems. Aimed at advanced undergraduate and beginning graduate students, this textbook provides an integrated viewpoint that shows how to apply emerging methods from data science, data mining, and machine learning to engineering and the physical sciences.

Optimization and Control for Systems in the Big-Data Era

Автор: Tsan-Ming Choi; Jianjun Gao; James H. Lambert; Chi
Название: Optimization and Control for Systems in the Big-Data Era
ISBN: 3319535161 ISBN-13(EAN): 9783319535166
Издательство: Springer
Рейтинг:
Цена: 139750.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book focuses on optimal control and systems engineering in the big data era. Part I offers reviews on optimization and control theories, and Part II examines the optimization and control applications.

Big Data Optimization: Recent Developments and Challenges

Автор: Emrouznejad
Название: Big Data Optimization: Recent Developments and Challenges
ISBN: 3319302639 ISBN-13(EAN): 9783319302638
Издательство: Springer
Рейтинг:
Цена: 139310.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Themain objective of this book is to provide the necessary background to work withbig data by introducing some novel optimization algorithms and codes capable ofworking in the big data setting as well as introducing some applications in bigdata optimization for both academics and practitioners interested, and tobenefit society, industry, academia, and government. Presenting applications ina variety of industries, this book will be useful for the researchers aiming toanalyses large scale data. Several optimization algorithms for big dataincluding convergent parallel algorithms, limited memory bundle algorithm,diagonal bundle method, convergent parallel algorithms, network analytics, andmany more have been explored in this book.

Machine Learning, Optimization, and Big Data

Автор: Panos Pardalos; Mario Pavone; Giovanni Maria Farin
Название: Machine Learning, Optimization, and Big Data
ISBN: 3319279254 ISBN-13(EAN): 9783319279251
Издательство: Springer
Рейтинг:
Цена: 52170.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This bookconstitutes revised selected papers from the First International Workshop onMachine Learning, Optimization, and Big Data, MOD 2015, held in Taormina, Sicily,Italy, in July 2015. The 32papers presented in this volume were carefully reviewed and selected from 73submissions.

Linear Optimization Problems with Inexact Data

Автор: Miroslav Fiedler; Josef Nedoma; Jaroslav Ramik; Ji
Название: Linear Optimization Problems with Inexact Data
ISBN: 1441940944 ISBN-13(EAN): 9781441940940
Издательство: Springer
Рейтинг:
Цена: 88500.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Linear programming has attracted the interest of mathematicians since World War II when the first computers were constructed. This book presents a comprehensive treatment of linear optimization with inexact data, summarizing existing results and presenting new ones within a unifying framework.

Machine Learning, Optimization, and Data Science

Автор: Giuseppe Nicosia; Panos Pardalos; Renato Umeton; G
Название: Machine Learning, Optimization, and Data Science
ISBN: 3030375986 ISBN-13(EAN): 9783030375980
Издательство: Springer
Рейтинг:
Цена: 91300.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the post-conference proceedings of the 5th International Conference on Machine Learning, Optimization, and Data Science, LOD 2019, held in Siena, Italy, in September 2019.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия