Автор: Mamoru Mimura Название: Homotopy Theory and Related Topics ISBN: 3540522468 ISBN-13(EAN): 9783540522461 Издательство: Springer Рейтинг: Цена: 32560.00 T Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Emmanuel D. Farjoun Название: Cellular Spaces, Null Spaces and Homotopy Localization ISBN: 3540606041 ISBN-13(EAN): 9783540606048 Издательство: Springer Рейтинг: Цена: 32560.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Relates to advances in periodicity in homotopy localization and in cellular spaces. The notion of homotopy localization is treated quite generally and encompasses all the known idempotent homotopy functors. This book is written with an advanced graduate student in topology and research homotopy theorist in mind.
Автор: Riehl Название: Categorical Homotopy Theory ISBN: 1107048451 ISBN-13(EAN): 9781107048454 Издательство: Cambridge Academ Рейтинг: Цена: 90810.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This categorical perspective on homotopy theory helps consolidate and simplify one`s understanding of derived functors, homotopy limits and colimits, and model categories, among others.
Автор: John Greenlees Название: Axiomatic, Enriched and Motivic Homotopy Theory ISBN: 1402018339 ISBN-13(EAN): 9781402018336 Издательство: Springer Рейтинг: Цена: 194730.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Consists of a series of expository articles on axiomatic, enriched and motivic homotopy theory arising out of a NATO Advanced Study Institute at the Isaac Newton Institute for the Mathematical Sciences in Cambridge, UK in September 2002.
Автор: Krzysztof P. Rybakowski Название: The Homotopy Index and Partial Differential Equations ISBN: 3540180672 ISBN-13(EAN): 9783540180678 Издательство: Springer Рейтинг: Цена: 88500.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: The homotopy or Conley index, which provides an algebraic-topologi- cal measure of an isolated invariant set, is defined to be the ho- motopy type of the quotient space N /N , where is a certain 1 2 1 2 compact pair, called an index pair.
Автор: H-J. Baues; A. Quintero Название: Infinite Homotopy Theory ISBN: 9401064938 ISBN-13(EAN): 9789401064934 Издательство: Springer Рейтинг: Цена: 46570.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: In handling non-compact spaces we must take into account the infinity behaviour of such spaces. Later, Freudenthal [ETR] gave a rigorous treatment of the topology of "ideal points" by introducing the space of "ends" of a non-compact space.
Автор: Benoit Fresse Название: Homotopy of Operads and Grothendieck-Teichmuller Groups: Part 1: The Algebraic Theory and its Topological Background ISBN: 1470434814 ISBN-13(EAN): 9781470434816 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 107850.00 T Наличие на складе: Невозможна поставка. Описание: The Grothendieck-Teichmuller group was defined by Drinfeld in quantum group theory with insights coming from the Grothendieck program in Galois theory. The ultimate goal of this book is to explain that this group has a topological interpretation as a group of homotopy automorphisms associated to the operad of little 2-discs, which is an object used to model commutative homotopy structures in topology. This volume gives a comprehensive survey on the algebraic aspects of this subject. The book explains the definition of an operad in a general context, reviews the definition of the little discs operads, and explains the definition of the Grothendieck-Teichmuller group from the viewpoint of the theory of operads. In the course of this study, the relationship between the little discs operads and the definition of universal operations associated to braided monoidal category structures is explained. Also provided is a comprehensive and self-contained survey of the applications of Hopf algebras to the definition of a rationalization process, the Malcev completion, for groups and groupoids. Most definitions are carefully reviewed in the book; it requires minimal prerequisites to be accessible to a broad readership of graduate students and researchers interested in the applications of operads.
Автор: Benoit Fresse Название: Homotopy of Operads and Grothendieck-Teichmuller Groups: Part 2: The Applications of (Rational) Homotopy Theory Methods ISBN: 1470434822 ISBN-13(EAN): 9781470434823 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 107850.00 T Наличие на складе: Невозможна поставка. Описание: The ultimate goal of this book is to explain that the Grothendieck-Teichmuller group, as defined by Drinfeld in quantum group theory, has a topological interpretation as a group of homotopy automorphisms associated to the little 2-disc operad. To establish this result, the applications of methods of algebraic topology to operads must be developed. This volume is devoted primarily to this subject, with the main objective of developing a rational homotopy theory for operads. The book starts with a comprehensive review of the general theory of model categories and of general methods of homotopy theory. The definition of the Sullivan model for the rational homotopy of spaces is revisited, and the definition of models for the rational homotopy of operads is then explained. The applications of spectral sequence methods to compute homotopy automorphism spaces associated to operads are also explained. This approach is used to get a topological interpretation of the Grothendieck-Teichmuller group in the case of the little 2-disc operad. This volume is intended for graduate students and researchers interested in the applications of homotopy theory methods in operad theory. It is accessible to readers with a minimal background in classical algebraic topology and operad theory.
Автор: Maria Basterra, Kristine Bauer, Kathryn Hess, Brenda Johnson Название: Women in Topology: Collaborations in Homotopy Theory ISBN: 1470410133 ISBN-13(EAN): 9781470410131 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 104410.00 T Наличие на складе: Невозможна поставка. Описание: Contains the proceedings of the WIT: Women in Topology workshop, held in August 2013. It contains papers based on the results obtained by team projects in homotopy theory, including $A$-infinity structures, equivariant homotopy theory, functor calculus, model categories, orbispaces, and topological Hochschild homology.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz