Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Mining of Massive Datasets, Leskovec Jure


Варианты приобретения
Цена: 71810.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: 1 шт.  Склад Америка: 149 шт.  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября

Добавить в корзину
в Мои желания

Автор: Leskovec Jure   (Юре Лесковеч)
Название:  Mining of Massive Datasets
Перевод названия: Юре Лесковеч: Сбор массивных наборов данных
ISBN: 9781108476348
Издательство: Cambridge Academ
Классификация:




ISBN-10: 1108476341
Обложка/Формат: Hardcover
Страницы: 565
Вес: 1.24 кг.
Дата издания: 09.01.2020
Серия: Reference/Librarianship
Язык: English
Издание: 3 revised edition
Иллюстрации: Worked examples or exercises; 16 halftones, black and white; 60 line drawings, black and white
Размер: 249 x 180 x 30
Читательская аудитория: Tertiary education (us: college)
Ключевые слова: Databases,Data mining,Information theory,Knowledge management,Machine learning,Pattern recognition, COMPUTERS / Computer Vision & Pattern Recognition
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: Essential reading for students and practitioners, this book focuses on practical algorithms used to solve key problems in data mining, with exercises suitable for students from the advanced undergraduate level and beyond. This third edition includes new and extended coverage on decision trees, deep learning, and mining social-network graphs.

Compression Schemes for Mining Large Datasets

Автор: T. Ravindra Babu; M. Narasimha Murty; S.V. Subrahm
Название: Compression Schemes for Mining Large Datasets
ISBN: 1447170555 ISBN-13(EAN): 9781447170556
Издательство: Springer
Рейтинг:
Цена: 88500.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book addresses the challenges of data abstraction generation using the least number of database scans, compressing data through novel lossy and non-lossy schemes, and carrying out clustering and classification directly in the compressed domain.

Compression Schemes for Mining Large Datasets

Автор: T. Ravindra Babu; M. Narasimha Murty; S.V. Subrahm
Название: Compression Schemes for Mining Large Datasets
ISBN: 1447156064 ISBN-13(EAN): 9781447156062
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book addresses the challenges of data abstraction generation using the least number of database scans, compressing data through novel lossy and non-lossy schemes, and carrying out clustering and classification directly in the compressed domain.

Mastering Large Datasets: Parallelize and Distribute Your Python Code

Автор: John T. Wolohan (
Название: Mastering Large Datasets: Parallelize and Distribute Your Python Code
ISBN: 1617296236 ISBN-13(EAN): 9781617296239
Издательство: Неизвестно
Рейтинг:
Цена: 45970.00 T
Наличие на складе: Невозможна поставка.
Описание: Summary
Modern data science solutions need to be clean, easy to read, and scalable. In Mastering Large Datasets with Python, author J.T. Wolohan teaches you how to take a small project and scale it up using a functionally influenced approach to Python coding. You'll explore methods and built-in Python tools that lend themselves to clarity and scalability, like the high-performing parallelism method, as well as distributed technologies that allow for high data throughput. The abundant hands-on exercises in this practical tutorial will lock in these essential skills for any large-scale data science project.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Programming techniques that work well on laptop-sized data can slow to a crawl--or fail altogether--when applied to massive files or distributed datasets. By mastering the powerful map and reduce paradigm, along with the Python-based tools that support it, you can write data-centric applications that scale efficiently without requiring codebase rewrites as your requirements change.

About the book
Mastering Large Datasets with Python teaches you to write code that can handle datasets of any size. You'll start with laptop-sized datasets that teach you to parallelize data analysis by breaking large tasks into smaller ones that can run simultaneously. You'll then scale those same programs to industrial-sized datasets on a cluster of cloud servers. With the map and reduce paradigm firmly in place, you'll explore tools like Hadoop and PySpark to efficiently process massive distributed datasets, speed up decision-making with machine learning, and simplify your data storage with AWS S3.

What's inside

  • An introduction to the map and reduce paradigm
  • Parallelization with the multiprocessing module and pathos framework
  • Hadoop and Spark for distributed computing
  • Running AWS jobs to process large datasets

About the reader
For Python programmers who need to work faster with more data.

About the author
J. T. Wolohan is a lead data scientist at Booz Allen Hamilton, and a PhD researcher at Indiana University, Bloomington.

Table of Contents:

PART 1

1 ] Introduction

2 ] Accelerating large dataset work: Map and parallel computing

3 ] Function pipelines for mapping complex transformations

4 ] Processing large datasets with lazy workflows

5 ] Accumulation operations with reduce

6 ] Speeding up map and reduce with advanced parallelization

PART 2

7 ] Processing truly big datasets with Hadoop and Spark

8 ] Best practices for large data with Apache Streaming and mrjob

9 ] PageRank with map and reduce in PySpark

10 ] Faster decision-making with machine learning and PySpark

PART 3

11 ] Large datasets in the cloud with Amazon Web Services and S3

12 ] MapReduce in the cloud with Amazon's Elastic MapReduce

Graphics of Large Datasets

Автор: Antony Unwin; Martin Theus; Heike Hofmann
Название: Graphics of Large Datasets
ISBN: 149393869X ISBN-13(EAN): 9781493938698
Издательство: Springer
Рейтинг:
Цена: 130430.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book shows how to look at ways of visualizing large datasets, whether large in numbers of cases, or large in numbers of variables, or large in both. All ideas are illustrated with displays from analyses of real datasets.

Multidimensional Mining of Massive Text Data

Автор: Zhang Chao, Han Jiawei
Название: Multidimensional Mining of Massive Text Data
ISBN: 1681735199 ISBN-13(EAN): 9781681735191
Издательство: Mare Nostrum (Eurospan)
Цена: 77610.00 T
Наличие на складе: Невозможна поставка.
Описание:

Unstructured text, as one of the most important data forms, plays a crucial role in data-driven decision making in domains ranging from social networking and information retrieval to scientific research and healthcare informatics. In many emerging applications, people's information need from text data is becoming multidimensional-they demand useful insights along multiple aspects from a text corpus. However, acquiring such multidimensional knowledge from massive text data remains a challenging task.

This book presents data mining techniques that turn unstructured text data into multidimensional knowledge. We investigate two core questions. (1) How does one identify task-relevant text data with declarative queries in multiple dimensions? (2) How does one distill knowledge from text data in a multidimensional space? To address the above questions, we develop a text cube framework. First, we develop a cube construction module that organizes unstructured data into a cube structure, by discovering latent multidimensional and multi-granular structure from the unstructured text corpus and allocating documents into the structure. Second, we develop a cube exploitation module that models multiple dimensions in the cube space, thereby distilling from user-selected data multidimensional knowledge. Together, these two modules constitute an integrated pipeline: leveraging the cube structure, users can perform multidimensional, multigranular data selection with declarative queries; and with cube exploitation algorithms, users can extract multidimensional patterns from the selected data for decision making.

The proposed framework has two distinctive advantages when turning text data into multidimensional knowledge: flexibility and label-efficiency. First, it enables acquiring multidimensional knowledge flexibly, as the cube structure allows users to easily identify task-relevant data along multiple dimensions at varied granularities and further distill multidimensional knowledge. Second, the algorithms for cube construction and exploitation require little supervision; this makes the framework appealing for many applications where labeled data are expensive to obtain.


Multidimensional Mining of Massive Text Data

Автор: Chao Zhang, Jiawei Han
Название: Multidimensional Mining of Massive Text Data
ISBN: 1681735210 ISBN-13(EAN): 9781681735214
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 97950.00 T
Наличие на складе: Нет в наличии.
Описание: Unstructured text, as one of the most important data forms, plays a crucial role in data-driven decision making in domains ranging from social networking and information retrieval to scientific research and healthcare informatics. In many emerging applications, people's information need from text data is becoming multidimensional—they demand useful insights along multiple aspects from a text corpus. However, acquiring such multidimensional knowledge from massive text data remains a challenging task. This book presents data mining techniques that turn unstructured text data into multidimensional knowledge. We investigate two core questions. (1) How does one identify task-relevant text data with declarative queries in multiple dimensions? (2) How does one distill knowledge from text data in a multidimensional space? To address the above questions, we develop a text cube framework. First, we develop a cube construction module that organizes unstructured data into a cube structure, by discovering latent multidimensional and multi-granular structure from the unstructured text corpus and allocating documents into the structure. Second, we develop a cube exploitation module that models multiple dimensions in the cube space, thereby distilling from user-selected data multidimensional knowledge. Together, these two modules constitute an integrated pipeline: leveraging the cube structure, users can perform multidimensional, multigranular data selection with declarative queries; and with cube exploitation algorithms, users can extract multidimensional patterns from the selected data for decision making. The proposed framework has two distinctive advantages when turning text data into multidimensional knowledge: flexibility and label-efficiency. First, it enables acquiring multidimensional knowledge flexibly, as the cube structure allows users to easily identify task-relevant data along multiple dimensions at varied granularities and further distill multidimensional knowledge. Second, the algorithms for cube construction and exploitation require little supervision; this makes the framework appealing for many applications where labeled data are expensive to obtain.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия