Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Automated machine learning, 


Варианты приобретения
Цена: 46570.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: 1 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания


Название:  Automated machine learning
ISBN: 9783030053178
Издательство: Springer
Классификация:




ISBN-10: 3030053172
Обложка/Формат: Hardcover
Страницы: 219
Вес: 0.61 кг.
Дата издания: 28.05.2019
Серия: The springer series on challenges in machine learning
Язык: English
Издание: 1st ed. 2019
Иллюстрации: 32 tables, color; 45 illustrations, color; 9 illustrations, black and white; xiv, 219 p. 54 illus., 45 illus. in color.
Размер: 162 x 241 x 17
Читательская аудитория: Professional & vocational
Подзаголовок: Methods, systems, challenges
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.
Дополнительное описание: 1 Hyperparameter Optimization.- 2 Meta-Learning.- 3 Neural Architecture Search.- 4 Auto-WEKA.- 5 Hyperopt-Sklearn.- 6 Auto-sklearn.- 7 Towards Automatically-Tuned Deep Neural Networks.- 8 TPOT.- 9 The Automatic Statistician.- 10 AutoML Challenges.


Machine Learning

Автор: Kevin Murphy
Название: Machine Learning
ISBN: 0262018020 ISBN-13(EAN): 9780262018029
Издательство: MIT Press
Рейтинг:
Цена: 124150.00 T
Наличие на складе: Невозможна поставка.
Описание:

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.

Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.

The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package -- PMTK (probabilistic modeling toolkit) -- that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.


Machine learning for automated theorem proving

Автор: Holden, Sean B.
Название: Machine learning for automated theorem proving
ISBN: 1680838989 ISBN-13(EAN): 9781680838985
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 91470.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Focusses on the research that has appeared to date on incorporating ML methods into solvers for propositional satisfiability SAT problems, and also solvers for its immediate variants such as and quantified SAT (QSAT). The comprehensiveness of the coverage means that ML researchers gain an understanding of state-of-the-art SAT and QSAT solvers.

Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems

Автор: Geron Aurelien
Название: Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems
ISBN: 1492032646 ISBN-13(EAN): 9781492032649
Издательство: Wiley
Рейтинг:
Цена: 63350.00 T
Наличие на складе: Поставка под заказ.
Описание:

Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data.

The updated edition of this practical book uses concrete examples, minimal theory, and three production-ready Python frameworks--scikit-learn, Keras, and TensorFlow--to help you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you've learned, all you need is programming experience to get started.


Machine Learning for Subsurface Characterization

Автор: Misra, Siddharth
Название: Machine Learning for Subsurface Characterization
ISBN: 0128177365 ISBN-13(EAN): 9780128177365
Издательство: Elsevier Science
Рейтинг:
Цена: 123520.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

To continue to meet demand while keeping costs down, petroleum and reservoir engineers know it is critical to utilize their asset's data through more complex modeling methods, and machine learning and data analytics is the known alternative approach to accurately represent the complexity of fluid-filled rocks. With a lack of training resources available, Machine Learning for Subsurface Characterization focuses on the development and application of neural networks, deep learning, unsupervised learning, reinforcement learning, and clustering methods for subsurface characterization under constraints. Such constraints are encountered during subsurface engineering operations due to financial, operational, regulatory, risk, technological, and environmental challenges.

This reference teaches how to do more with less. Used to develop tools and techniques of data-driven predictive modelling and machine learning for subsurface engineering and science, engineers will be introduced to methods of generating subsurface signals and analyzing the complex relationships within various subsurface signals using machine learning. Algorithmic procedures in MATLAB, R, PYTHON, and TENSORFLOW are displayed in text and through online instructional video to assist training and learning. Field cases are also presented to understand real-world applications, with a particular focus on examples involving shale reservoirs.

Explaining the concept of machine learning, advantages to the industry, and applications applied to complex subsurface rocks, Machine Learning for Subsurface Characterization delivers a missing piece to the reservoir engineer's toolbox needed to support today's complex operations.

  • Focus on applying predictive modelling and machine learning from real case studies and Q&A sessions at the end of each chapter
  • Learn how to develop codes such as MATLAB, PYTHON, R, and TENSORFLOW with step-by-step guides included
  • Visually learn code development with video demonstrations included

Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.

Автор: Witten, Ian H.
Название: Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.
ISBN: 0128042915 ISBN-13(EAN): 9780128042915
Издательство: Elsevier Science
Рейтинг:
Цена: 61750.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.

Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.

Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.

It contains

  • Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
  • Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
  • Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.

  • Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
  • Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
  • Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
  • Includes open-access online courses that introduce practical applications of the material in the book

Python machine learning -

Автор: Raschka, Sebastian Mirjalili, Vahid
Название: Python machine learning -
ISBN: 1787125939 ISBN-13(EAN): 9781787125933
Издательство: Неизвестно
Цена: 53940.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This second edition of Python Machine Learning by Sebastian Raschka is for developers and data scientists looking for a practical approach to machine learning and deep learning. In this updated edition, you`ll explore the machine learning process using Python and the latest open source technologies, including scikit-learn and TensorFlow 1.x.

Practical Automated Machine Learning on Azure

Автор: Mukunthu Deepak, Shah Parashar, Tok Wee Hyong
Название: Practical Automated Machine Learning on Azure
ISBN: 149205559X ISBN-13(EAN): 9781492055594
Издательство: Wiley
Рейтинг:
Цена: 50680.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Develop smart applications without spending days and weeks building machine-learning models. With this practical book, you`ll learn how to apply Automated Machine Learning, a process that uses machine learning to help people build machine learning models.

Principles of Automated Negotiation

Автор: Fatima
Название: Principles of Automated Negotiation
ISBN: 1107002540 ISBN-13(EAN): 9781107002548
Издательство: Cambridge Academ
Рейтинг:
Цена: 50680.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: With an increasing number of applications in the context of multi-agent systems, automated negotiation is a rapidly growing area. Written by top researchers in the field, this state-of-the-art treatment of the subject explores key issues involved in the design of negotiating agents, covering strategic, heuristic, and axiomatic approaches. The authors discuss the potential benefits of automated negotiation as well as the unique challenges it poses for computer scientists and for researchers in artificial intelligence. They also consider possible applications and give readers a feel for the types of domains where automated negotiation is already being deployed. This book is ideal for graduate students and researchers in computer science who are interested in multi-agent systems. It will also appeal to negotiation researchers from disciplines such as management and business studies, psychology and economics.

Automated Planning and Acting

Автор: Ghallab
Название: Automated Planning and Acting
ISBN: 1107037271 ISBN-13(EAN): 9781107037274
Издательство: Cambridge Academ
Рейтинг:
Цена: 70750.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Autonomous AI systems need complex computational techniques for planning and performing actions. This textbook presents the most recent and advanced techniques within the field that allow systems such as the Mars rovers, intelligent harbor-management systems, or self-driving cards to act effectively in the real world.

Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings

Автор: Thuy T. Pham
Название: Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings
ISBN: 3319986740 ISBN-13(EAN): 9783319986746
Издательство: Springer
Рейтинг:
Цена: 111790.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book describes efforts to improve subject-independent automated classification techniques using a better feature extraction method and a more efficient model of classification. It evaluates three popular saliency criteria for feature selection, showing that they share common limitations, including time-consuming and subjective manual de-facto standard practice, and that existing automated efforts have been predominantly used for subject dependent setting. It then proposes a novel approach for anomaly detection, demonstrating its effectiveness and accuracy for automated classification of biomedical data, and arguing its applicability to a wider range of unsupervised machine learning applications in subject-independent settings.

Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings

Автор: Thuy T. Pham
Название: Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings
ISBN: 3030075184 ISBN-13(EAN): 9783030075187
Издательство: Springer
Рейтинг:
Цена: 111790.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book describes efforts to improve subject-independent automated classification techniques using a better feature extraction method and a more efficient model of classification. It evaluates three popular saliency criteria for feature selection, showing that they share common limitations, including time-consuming and subjective manual de-facto standard practice, and that existing automated efforts have been predominantly used for subject dependent setting. It then proposes a novel approach for anomaly detection, demonstrating its effectiveness and accuracy for automated classification of biomedical data, and arguing its applicability to a wider range of unsupervised machine learning applications in subject-independent settings.

Hands-On Automated Machine Learning

Автор: Das Sibanjan, Cakmak Umit Mert
Название: Hands-On Automated Machine Learning
ISBN: 1788629892 ISBN-13(EAN): 9781788629898
Издательство: Неизвестно
Рейтинг:
Цена: 43630.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book helps machine learning professionals in developing AutoML systems that can be utilized to build ML solutions. This book covers the necessary foundations and shows the most practical ways possible to get to speed with regards to creating AutoML modules.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия