Автор: Kevin Murphy Название: Machine Learning ISBN: 0262018020 ISBN-13(EAN): 9780262018029 Издательство: MIT Press Рейтинг: Цена: 124150.00 T Наличие на складе: Невозможна поставка. Описание:
A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.
Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.
The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package -- PMTK (probabilistic modeling toolkit) -- that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Автор: Steven L. Brunton, J. Nathan Kutz Название: Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control ISBN: 1108422098 ISBN-13(EAN): 9781108422093 Издательство: Amazon Internet Рейтинг: Цена: 0.00 T Наличие на складе: Невозможна поставка. Описание: Data-driven discovery is revolutionizing the modeling, prediction, and control of complex systems. Aimed at advanced undergraduate and beginning graduate students, this textbook provides an integrated viewpoint that shows how to apply emerging methods from data science, data mining, and machine learning to engineering and the physical sciences.
Автор: Boyd Stephen Название: Introduction to Applied Linear Algebra ISBN: 1316518965 ISBN-13(EAN): 9781316518960 Издательство: Cambridge Academ Рейтинг: Цена: 45410.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: A groundbreaking introductory textbook covering the linear algebra methods needed for data science and engineering applications. It combines straightforward explanations with numerous practical examples and exercises from data science, machine learning and artificial intelligence, signal and image processing, navigation, control, and finance.
Автор: Quaintance Jocelyn, Gallier Jean H Название: Linear Algebra And Optimization With Applications To Machine Learning - Volume Ii: Fundamentals Of Optimization Theory With Applications To Machine Learning ISBN: 9811216568 ISBN-13(EAN): 9789811216565 Издательство: World Scientific Publishing Рейтинг: Цена: 190080.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Volume 2 applies the linear algebra concepts presented in Volume 1 to optimization problems which frequently occur throughout machine learning. This book blends theory with practice by not only carefully discussing the mathematical under pinnings of each optimization technique but by applying these techniques to linear programming, support vector machines (SVM), principal component analysis (PCA), and ridge regression. Volume 2 begins by discussing preliminary concepts of optimization theory such as metric spaces, derivatives, and the Lagrange multiplier technique for finding extrema of real valued functions. The focus then shifts to the special case of optimizing a linear function over a region determined by affine constraints, namely linear programming. Highlights include careful derivations and applications of the simplex algorithm, the dual-simplex algorithm, and the primal-dual algorithm. The theoretical heart of this book is the mathematically rigorous presentation of various nonlinear optimization methods, including but not limited to gradient decent, the Karush-Kuhn-Tucker (KKT) conditions, Lagrangian duality, alternating direction method of multipliers (ADMM), and the kernel method. These methods are carefully applied to hard margin SVM, soft margin SVM, kernel PCA, ridge regression, lasso regression, and elastic-net regression. Matlab programs implementing these methods are included.
Автор: Gallier Jean H, Quaintance Jocelyn Название: Linear Algebra And Optimization With Applications To Machine Learning - Volume I: Linear Algebra For Computer Vision, Robotics, And Machine Learning ISBN: 9811206392 ISBN-13(EAN): 9789811206399 Издательство: World Scientific Publishing Рейтинг: Цена: 190080.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book provides the mathematical fundamentals of linear algebra to practicers in computer vision, machine learning, robotics, applied mathematics, and electrical engineering. By only assuming a knowledge of calculus, the authors develop, in a rigorous yet down to earth manner, the mathematical theory behind concepts such as: vectors spaces, bases, linear maps, duality, Hermitian spaces, the spectral theorems, SVD, and the primary decomposition theorem. At all times, pertinent real-world applications are provided. This book includes the mathematical explanations for the tools used which we believe that is adequate for computer scientists, engineers and mathematicians who really want to do serious research and make significant contributions in their respective fields.
Автор: Panos Pardalos; Mario Pavone; Giovanni Maria Farin Название: Machine Learning, Optimization, and Big Data ISBN: 3319279254 ISBN-13(EAN): 9783319279251 Издательство: Springer Рейтинг: Цена: 52170.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This bookconstitutes revised selected papers from the First International Workshop onMachine Learning, Optimization, and Big Data, MOD 2015, held in Taormina, Sicily,Italy, in July 2015. The 32papers presented in this volume were carefully reviewed and selected from 73submissions.
Автор: Giuseppe Nicosia; Panos Pardalos; Giovanni Giuffri Название: Machine Learning, Optimization, and Data Science ISBN: 3030137082 ISBN-13(EAN): 9783030137083 Издательство: Springer Рейтинг: Цена: 76390.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book constitutes the post-conference proceedings of the 4th International Conference on Machine Learning, Optimization, and Data Science, LOD 2018, held in Volterra, Italy, in September 2018.The 46 full papers presented were carefully reviewed and selected from 126 submissions.
Автор: Carlos Alberto Ochoa Ortiz Zezzatti, Camelia Chira, Arturo Hernandez, Miguel Basurto Название: Logistics Management and Optimization through Hybrid Artificial Intelligence Systems ISBN: 146660297X ISBN-13(EAN): 9781466602977 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 189420.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Logistics Management and Optimization through Hybrid Artificial Intelligence Systems offers the latest research within the field of HAIS, surveying the broad topics and collecting case studies, future directions, and cutting edge analyses. Using biologically inspired algorithms such as ant colony optimization and particle swarm optimization, this text includes solutions and heuristics for practitioners and academics alike, offering a vital resource for staying abreast in this ever-burgeoning field.
Автор: Giuseppe Nicosia; Panos Pardalos; Renato Umeton; G Название: Machine Learning, Optimization, and Data Science ISBN: 3030375986 ISBN-13(EAN): 9783030375980 Издательство: Springer Рейтинг: Цена: 91300.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book constitutes the post-conference proceedings of the 5th International Conference on Machine Learning, Optimization, and Data Science, LOD 2019, held in Siena, Italy, in September 2019.
Автор: Anand J. Kulkarni; Suresh Chandra Satapathy Название: Optimization in Machine Learning and Applications ISBN: 981150993X ISBN-13(EAN): 9789811509933 Издательство: Springer Рейтинг: Цена: 111790.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book discusses one of the major applications of artificial intelligence: the use of machine learning to extract useful information from multimodal data. It discusses the optimization methods that help minimize the error in developing patterns and classifications, which further helps improve prediction and decision-making.
Автор: Marwala Tshilidzi, Leke Collins Achepsah Название: Handbook Of Machine Learning - Volume 2: Optimization And Decision Making ISBN: 9811205663 ISBN-13(EAN): 9789811205668 Издательство: World Scientific Publishing Рейтинг: Цена: 126720.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание:
Building on Handbook of Machine Learning - Volume 1: Foundation of Artificial Intelligence, this volume on Optimization and Decision Making covers a range of algorithms and their applications. Like the first volume, it provides a starting point for machine learning enthusiasts as a comprehensive guide on classical optimization methods. It also provides an in-depth overview on how artificial intelligence can be used to define, disprove or validate economic modeling and decision making concepts.
Автор: J. Joshua Thomas, Pinar Karagoz, B. Bazeer Ahamed, Pandian Vasant Название: Deep Learning Techniques and Optimization Strategies in Big Data Analytics ISBN: 179981193X ISBN-13(EAN): 9781799811930 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 180180.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there's a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz