Copulas and Its Application in Hydrology and Water Resources, Lu Chen
Новое издание
Автор: Chen Название: Copulas and Its Application in Hydrology and Water Resources ISBN: 9811305730 ISBN-13(EAN): 9789811305733 Издательство: Springer Цена: 149060 T Описание: This book presents an overview of copula theory and its application in hydrology, and provides valuable insights, useful methods and practical applications for multivariate hydrological analysis using copulas.
Автор: Chen Название: Copulas and Its Application in Hydrology and Water Resources ISBN: 9811305730 ISBN-13(EAN): 9789811305733 Издательство: Springer Рейтинг: Цена: 149060.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book presents an overview of copula theory and its application in hydrology, and provides valuable insights, useful methods and practical applications for multivariate hydrological analysis using copulas.
Автор: M. Shahin Название: Hydrology and Water Resources of Africa ISBN: 9401742103 ISBN-13(EAN): 9789401742108 Издательство: Springer Рейтинг: Цена: 104480.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Africa, the cradle of many old civilizations, is the second largest world continent, and the homeland of nearly one-eighth of the world population.
Автор: Ingemar Kinnmark Название: The Shallow Water Wave Equations: Formulation, Analysis and Application ISBN: 3540160310 ISBN-13(EAN): 9783540160311 Издательство: Springer Рейтинг: Цена: 113190.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: 1. 1 AREAS OF APPLICATION FOR THE SHALLOW WATER EQUATIONS The shallow water equations describe conservation of mass and mo- mentum in a fluid. They may be expressed in the primitive equation form Continuity Equation _ a, ] V. (Hv) = 0 L(l;, v;h) at (1. 1) Non-Conservative Momentum Equations a M("vjt, f, g, h, A) = at(v) + (v. V)v + tv - fkxv + gV, - AIH = 0 (1. 2) 2 where is elevation above a datum (L) h is bathymetry (L) H = h + C is total fluid depth (L) v is vertically averaged fluid velocity in eastward direction (x) and northward direction (y) (LIT) t is the non-linear friction coefficient (liT) f is the Coriolis parameter (liT) is acceleration due to gravity (L/T2) g A is atmospheric (wind) forcing in eastward direction (x) and northward direction (y) (L2/T2) v is the gradient operator (IlL) k is a unit vector in the vertical direction (1) x is positive eastward (L) is positive northward (L) Y t is time (T) These Non-Conservative Momentum Equations may be compared to the Conservative Momentum Equations (2. 4). The latter originate directly from a vertical integration of a momentum balance over a fluid ele- ment. The former are obtained indirectly, through subtraction of the continuity equation from the latter. Equations (1. 1) and (1. 2) are valid under the following assumptions: 1. The fluid is well-mixed vertically with a hydrostatic pressure gradient. 2. The density of the fluid is constant.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz