Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Outlier Detection for Temporal Data, Manish Gupta, Jing Gao, Charu Aggarwal, Jiawei Han


Варианты приобретения
Цена: 41580.00T
Кол-во:
 о цене
Наличие: Невозможна поставка.

в Мои желания

Автор: Manish Gupta, Jing Gao, Charu Aggarwal, Jiawei Han
Название:  Outlier Detection for Temporal Data
ISBN: 9781627053754
Издательство: Mare Nostrum (Eurospan)
Классификация:
ISBN-10: 1627053751
Обложка/Формат: Paperback
Страницы: 129
Вес: 0.23 кг.
Дата издания: 30.03.2014
Серия: Synthesis lectures on data mining and knowledge discovery
Язык: English
Иллюстрации: Black & white illustrations
Размер: 238 x 192 x 8
Читательская аудитория: General (us: trade)
Ключевые слова: Data mining
Рейтинг:
Поставляется из: Англии
Описание: Compared to general outlier detection, techniques for temporal outlier detection are very different. This book presents an organised picture of both recent and past research in temporal outlier detection. It starts with the basics before moving on to the main ideas in state-of-the-art outlier detection techniques.

Outlier Analysis

Автор: Charu C. Aggarwal
Название: Outlier Analysis
ISBN: 3319475770 ISBN-13(EAN): 9783319475776
Издательство: Springer
Рейтинг:
Цена: 62410.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

This book provides comprehensive coverage of the field of outlier analysis from a computer science point of view. It integrates methods from data mining, machine learning, and statistics within the computational framework and therefore appeals to multiple communities. The chapters of this book can be organized into three categories:
Basic algorithms: Chapters 1 through 7 discuss the fundamental algorithms for outlier analysis, including probabilistic and statistical methods, linear methods, proximity-based methods, high-dimensional (subspace) methods, ensemble methods, and supervised methods.Domain-specific methods: Chapters 8 through 12 discuss outlier detection algorithms for various domains of data, such as text, categorical data, time-series data, discrete sequence data, spatial data, and network data.Applications: Chapter 13 is devoted to various applications of outlier analysis. Some guidance is also provided for the practitioner.
The second edition of this book is more detailed and is written to appeal to both researchers and practitioners. Significant new material has been added on topics such as kernel methods, one-class support-vector machines, matrix factorization, neural networks, outlier ensembles, time-series methods, and subspace methods. It is written as a textbook and can be used for classroom teaching.

From Social Data Mining and Analysis to Prediction and Community Detection

Автор: Mehmet Kaya; ?zcan Erdo?an; Jon Rokne
Название: From Social Data Mining and Analysis to Prediction and Community Detection
ISBN: 3319513664 ISBN-13(EAN): 9783319513669
Издательство: Springer
Рейтинг:
Цена: 111790.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents the state-of-the-art in various aspects of analysis and mining of online social networks.

Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques: A Guide to Data Science for Fraud Detection

Автор: Baesens Bart, Verbeke Wouter, Van Vlasselaer Veron
Название: Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques: A Guide to Data Science for Fraud Detection
ISBN: 1119133122 ISBN-13(EAN): 9781119133124
Издательство: Wiley
Рейтинг:
Цена: 41190.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Detect fraud earlier to mitigate loss and prevent cascading damage Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques is an authoritative guidebook for setting up a comprehensive fraud detection analytics solution.

Temporal Data Mining via Unsupervised Ensemble Learning

Автор: Yang Yun
Название: Temporal Data Mining via Unsupervised Ensemble Learning
ISBN: 0128116544 ISBN-13(EAN): 9780128116548
Издательство: Elsevier Science
Рейтинг:
Цена: 48270.00 T
Наличие на складе: Поставка под заказ.
Описание: Temporal Data Mining via Unsupervised Ensemble Learning provides the principle knowledge of temporal data mining in association with unsupervised ensemble learning and the fundamental problems of temporal data clustering from different perspectives. By providing three proposed ensemble approaches of temporal data clustering, this book presents a practical focus of fundamental knowledge and techniques, along with a rich blend of theory and practice. . Furthermore, the book includes illustrations of the proposed approaches based on data and simulation experiments to demonstrate all methodologies, and is a guide to the proper usage of these methods. As there is nothing universal that can solve all problems, it is important to understand the characteristics of both clustering algorithms and the target temporal data so the correct approach can be selected for a given clustering problem. . Scientists, researchers, and data analysts working with machine learning and data mining will benefit from this innovative book, as will undergraduate and graduate students following courses in computer science, engineering, and statistics.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия