Machine Learning in Computer-Aided Diagnosis: Medical Imaging Intelligence and Analysis, Kenji Suzuki
Автор: Boehm Matthias, Kumar Arun, Yang Jun Название: Data Management in Machine Learning Systems ISBN: 1681734966 ISBN-13(EAN): 9781681734965 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 67450.00 T Наличие на складе: Невозможна поставка. Описание:
Large-scale data analytics using machine learning (ML) underpins many modern data-driven applications. ML systems provide means of specifying and executing these ML workloads in an efficient and scalable manner. Data management is at the heart of many ML systems due to data-driven application characteristics, data-centric workload characteristics, and system architectures inspired by classical data management techniques.
In this book, we follow this data-centric view of ML systems and aim to provide a comprehensive overview of data management in ML systems for the end-to-end data science or ML lifecycle. We review multiple interconnected lines of work: (1) ML support in database (DB) systems, (2) DB-inspired ML systems, and (3) ML lifecycle systems. Covered topics include: in-database analytics via query generation and user-defined functions, factorized and statistical-relational learning; optimizing compilers for ML workloads; execution strategies and hardware accelerators; data access methods such as compression, partitioning and indexing; resource elasticity and cloud markets; as well as systems for data preparation for ML, model selection, model management, model debugging, and model serving. Given the rapidly evolving field, we strive for a balance between an up-to-date survey of ML systems, an overview of the underlying concepts and techniques, as well as pointers to open research questions. Hence, this book might serve as a starting point for both systems researchers and developers.
Автор: Jennifer Boger, Victoria Young, Jesse Hoey, Tizneem Jiancaro, Alex Mihailidis Название: Zero-Effort Technologies: Considerations, Challenges, and Use in Health, Wellness, and Rehabilitation, Second Edition ISBN: 1681732866 ISBN-13(EAN): 9781681732862 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 82230.00 T Наличие на складе: Невозможна поставка. Описание: This book introduces zero-effort technologies (ZETs), an emerging class of technologies that require little or no effort from the people who use them. ZETs use advanced computing techniques, such as computer vision, sensor fusion, decision-making and planning, machine learning, and the Internet of Things to autonomously perform the collection, analysis, and application of data about the user and/or his/her context. This book begins with an overview of ZETs, then presents concepts related to their development, including pervasive intelligent technologies and environments, design principles, and considerations regarding use. The book discusses select examples of the latest in ZET development before concluding with thoughts regarding future directions of the field.
Автор: Om Prakash Verma; Sudipta Roy; Subhash Chandra Pan Название: Advancement of Machine Intelligence in Interactive Medical Image Analysis ISBN: 9811510997 ISBN-13(EAN): 9789811510991 Издательство: Springer Рейтинг: Цена: 139750.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: The book discusses major technical advances and research findings in the field of machine intelligence in medical image analysis. This book provides insights into the basic science involved in processing, analysing, and utilising all aspects of advanced computational intelligence in medical decision-making based on medical imaging.
Автор: Hurwitz, Kaufman Marcia, Bowles Adrian Название: Cognitive Computing: Implementing Big Data Machine Learning Solutions ISBN: 1118896629 ISBN-13(EAN): 9781118896624 Издательство: Wiley Рейтинг: Цена: 40120.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: A comprehensive guide to learning technologies that unlock the value in big data Cognitive Computing provides detailed guidance toward building a new class of systems that learn from experience and derive insights to unlock the value of big data.
Автор: Dong Guozhu Название: Exploiting the Power of Group Differences: Using Patterns to Solve Data Analysis Problems ISBN: 1681735024 ISBN-13(EAN): 9781681735023 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 57290.00 T Наличие на складе: Невозможна поставка. Описание: This book presents pattern-based problem-solving methods for a variety of machine learning and data analysis problems. The methods are all based on techniques that exploit the power of group differences. They make use of group differences represented using emerging patterns (aka contrast patterns), which are patterns that match significantly different numbers of instances in different data groups. A large number of applications outside of the computing discipline are also included. Emerging patterns (EPs) are useful in many ways. EPs can be used as features, as simple classifiers, as subpopulation signatures/characterizations, and as triggering conditions for alerts. EPs can be used in gene ranking for complex diseases since they capture multi-factor interactions. The length of EPs can be used to detect anomalies, outliers, and novelties. Emerging/contrast pattern based methods for clustering analysis and outlier detection do not need distance metrics, avoiding pitfalls of the latter in exploratory analysis of high dimensional data. EP-based classifiers can achieve good accuracy even when the training datasets are tiny, making them useful for exploratory compound selection in drug design. EPs can serve as opportunities in opportunity-focused boosting and are useful for constructing powerful conditional ensembles. EP-based methods often produce interpretable models and results. In general, EPs are useful for classification, clustering, outlier detection, gene ranking for complex diseases, prediction model analysis and improvement, and so on. EPs are useful for many tasks because they represent group differences, which have extraordinary power. Moreover, EPs represent multi-factor interactions, whose effective handling is of vital importance and is a major challenge in many disciplines. Based on the results presented in this book, one can clearly say that patterns are useful, especially when they are linked to issues of interest. We believe that many effective ways to exploit group differences' power still remain to be discovered. Hopefully this book will inspire readers to discover such new ways, besides showing them existing ways, to solve various challenging problems.
Автор: Dong Guozhu Название: Exploiting the Power of Group Differences: Using Patterns to Solve Data Analysis Problems ISBN: 1681735040 ISBN-13(EAN): 9781681735047 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 77610.00 T Наличие на складе: Невозможна поставка. Описание: This book presents pattern-based problem-solving methods for a variety of machine learning and data analysis problems. The methods are all based on techniques that exploit the power of group differences. They make use of group differences represented using emerging patterns (aka contrast patterns), which are patterns that match significantly different numbers of instances in different data groups. A large number of applications outside of the computing discipline are also included. Emerging patterns (EPs) are useful in many ways. EPs can be used as features, as simple classifiers, as subpopulation signatures/characterizations, and as triggering conditions for alerts. EPs can be used in gene ranking for complex diseases since they capture multi-factor interactions. The length of EPs can be used to detect anomalies, outliers, and novelties. Emerging/contrast pattern based methods for clustering analysis and outlier detection do not need distance metrics, avoiding pitfalls of the latter in exploratory analysis of high dimensional data. EP-based classifiers can achieve good accuracy even when the training datasets are tiny, making them useful for exploratory compound selection in drug design. EPs can serve as opportunities in opportunity-focused boosting and are useful for constructing powerful conditional ensembles. EP-based methods often produce interpretable models and results. In general, EPs are useful for classification, clustering, outlier detection, gene ranking for complex diseases, prediction model analysis and improvement, and so on. EPs are useful for many tasks because they represent group differences, which have extraordinary power. Moreover, EPs represent multi-factor interactions, whose effective handling is of vital importance and is a major challenge in many disciplines. Based on the results presented in this book, one can clearly say that patterns are useful, especially when they are linked to issues of interest. We believe that many effective ways to exploit group differences' power still remain to be discovered. Hopefully this book will inspire readers to discover such new ways, besides showing them existing ways, to solve various challenging problems.
Автор: Anthony D. Joseph, Blaine Nelson, Benjamin I. P. Rubinstein, J. D. Tygar Название: Adversarial Machine Learning ISBN: 1107043468 ISBN-13(EAN): 9781107043466 Издательство: Cambridge Academ Рейтинг: Цена: 83430.00 T Наличие на складе: Невозможна поставка. Описание: Combining essential theory and practical techniques for analysing system security, and building robust machine learning in adversarial environments, as well as including case studies on email spam and network security, this complete introduction is an invaluable resource for researchers, practitioners and students in computer security and machine learning.
Автор: Salman Khan, Hossein Rahmani, Syed Afaq Ali Shah, Mohammed Bennamoun Название: A Guide to Convolutional Neural Networks for Computer Vision ISBN: 1681732785 ISBN-13(EAN): 9781681732787 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 102570.00 T Наличие на складе: Невозможна поставка. Описание: Computer vision has become increasingly important and effective in recent years due to its wide-ranging applications in areas as diverse as smart surveillance and monitoring, health and medicine, sports and recreation, robotics, drones, and self-driving cars. Visual recognition tasks, such as image classification, localization, and detection, are the core building blocks of many of these applications, and recent developments in Convolutional Neural Networks (CNNs) have led to outstanding performance in these state-of-the-art visual recognition tasks and systems. As a result, CNNs now form the crux of deep learning algorithms in computer vision.This self-contained guide will benefit those who seek to both understand the theory behind CNNs and to gain hands-on experience on the application of CNNs in computer vision. It provides a comprehensive introduction to CNNs starting with the essential concepts behind neural networks: training, regularization, and optimization of CNNs. The book also discusses a wide range of loss functions, network layers, and popular CNN architectures, reviews the different techniques for the evaluation of CNNs, and presents some popular CNN tools and libraries that are commonly used in computer vision. Further, this text describes and discusses case studies that are related to the application of CNN in computer vision, including image classification, object detection, semantic segmentation, scene understanding, and image generation.This book is ideal for undergraduate and graduate students, as no prior background knowledge in the field is required to follow the material, as well as new researchers, developers, engineers, and practitioners who are interested in gaining a quick understanding of CNN models.
Автор: Michael Stanley, Jongmin Lee Название: Sensor Analysis for the Internet of Things ISBN: 1681732890 ISBN-13(EAN): 9781681732893 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 82230.00 T Наличие на складе: Невозможна поставка. Описание: While it may be attractive to view sensors as simple transducers which convert physical quantities into electrical signals, the truth of the matter is more complex. The engineer should have a proper understanding of the physics involved in the conversion process, including interactions with other measurable quantities. A deep understanding of these interactions can be leveraged to apply sensor fusion techniques to minimize noise and/or extract additional information from sensor signals.Advances in microcontroller and MEMS manufacturing, along with improved internet connectivity, have enabled cost-effective wearable and Internet of Things sensor applications. At the same time, machine learning techniques have gone mainstream, so that those same applications can now be more intelligent than ever before. This book explores these topics in the context of a small set of sensor types.We provide some basic understanding of sensor operation for accelerometers, magnetometers, gyroscopes, and pressure sensors. We show how information from these can be fused to provide estimates of orientation. Then we explore the topics of machine learning and sensor data analytics.
Автор: Michael Felsberg Название: Probabilistic and Biologically Inspired Feature Representations ISBN: 1681733668 ISBN-13(EAN): 9781681733661 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 66530.00 T Наличие на складе: Невозможна поставка. Описание: pacote do Courseware consiste em duas publicacoes, VeriSMTM - Foundation Courseware e VeriSM - Foundation Study Guide. Este material de treinamento abrange o plano de estudos para a qualificacao da Fundacao VeriSM . O treinamento pode ser entregue em dois dias. Este material didatico e credenciado para preparar o aluno para a certificacao da VeriSM Foundation. O VeriSM Foundation consiste em duas partes: VeriSM Essentials e VeriSM Plus, cada uma cobrindo um dia de treinamento.Os alunos que ja possuem um certificado de Gerenciamento de Servicos (TI) podem se beneficiar do conhecimento que ja possuem. Eles sao o publico-alvo de apenas um treinamento do VeriSM Plus. Ao serem aprovados no exame VeriSM Plus, recebem o certificado VeriSM Foundation.Provedores de treinamento que desejam oferecer um treinamento de um dia sobre principios de gerenciamento de servicos podem decidir oferecer apenas o treinamento VeriSM Essentials. Os alunos que forem aprovados no exame VeriSM Essentials receberao o certificado VeriSM Essentials. Se eles passarem no exame VeriSM Plus mais tarde, receberao automaticamente o certificado VeriSM Foundation.O "courseware" abrange os seguintes topicos:A organizacao do servico (Essentials)Cultura de servico (Essentials)Pessoas e estrutura organizacional (Essentials)O modelo VeriSM (ambos)Praticas Progressivas (Plus)Tecnologias Inovadoras (Plus)O VeriSM e uma abordagem holistica e orientada aos negocios para o Gerenciamento de Servicos, que ajuda a entender o panorama crescente das melhores praticas e como integra-las para oferecer valor ao consumidor.E uma evolucao no pensamento em Gerenciamento de Servicos e oferece uma abordagem atualizada, incluindo as mais recentes praticas e desenvolvimentos tecnologicos, para ajudar as organizacoes a transformar seus negocios para a nova realidade da era digital.O VeriSM e um gerenciamento orientado a valor, evolutivo, responsivo e integrado.VeriSM e uma marca registrada e propriedade da IFDC, a Fundacao Internacional de Competencias Digitais.
Автор: Yevgeniy Vorobeychik, Murat Kantarcioglu Название: Adversarial Machine Learning ISBN: 1681733978 ISBN-13(EAN): 9781681733975 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 91470.00 T Наличие на складе: Невозможна поставка. Описание: Recounts the thrilling tale of America`s first spy drama - the legendary Frank Wisner`s intelligence operations in Romania as World War II ended and the Cold War dawned. Painstakingly reconstructed with the aid of specialised literature and archival collections, the story that emerges is one of danger and stealth, a real-life spy thriller unfolding just as the Cold War began.
Автор: Michael Felsberg Название: Probabilistic and Biologically Inspired Feature Representations ISBN: 1681730235 ISBN-13(EAN): 9781681730233 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 46200.00 T Наличие на складе: Невозможна поставка. Описание: Under the title Probabilistic and Biologically Inspired Feature Representations, this text collects a substantial amount of work on the topic of channel representations. Channel representations are a biologically motivated, wavelet-like approach to visual feature descriptors: they are local and compact, they form a computational framework, and the represented information can be reconstructed. The first property is shared with many histogram- and signature-based descriptors, the latter property with the related concept of population codes. In their unique combination of properties, channel representations become a visual Swiss army knife—they can be used for image enhancement, visual object tracking, as 2D and 3D descriptors, and for pose estimation. In the chapters of this text, the framework of channel representations will be introduced and its attributes will be elaborated, as well as further insight into its probabilistic modeling and algorithmic implementation will be given. Channel representations are a useful toolbox to represent visual information for machine learning, as they establish a generic way to compute popular descriptors such as HOG, SIFT, and SHOT. Even in an age of deep learning, they provide a good compromise between hand-designed descriptors and a-priori structureless feature spaces as seen in the layers of deep networks.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz