Multilevel Modeling of Categorical Outcomes Using IBM SPSS, Ronald H Heck, Scott Thomas, Lynn Tabata
Автор: Grimm Kevin J., Ram Nilam, Estabrook Ryne Название: Growth Modeling: Structural Equation and Multilevel Modeling Approaches ISBN: 1462526063 ISBN-13(EAN): 9781462526062 Издательство: Taylor&Francis Рейтинг: Цена: 75530.00 T Наличие на складе: Невозможна поставка. Описание: Growth models are among the core methods for analyzing how and when people change. Discussing both structural equation and multilevel modeling approaches, this book leads readers step by step through applying each model to longitudinal data to answer particular research questions. It demonstrates cutting-edge ways to describe linear and nonlinear change patterns, examine within-person and between-person differences in change, study change in latent variables, identify leading and lagging indicators of change, evaluate co-occurring patterns of change across multiple variables, and more. User-friendly features include real data examples, code (for Mplus or NLMIXED in SAS, and OpenMx or nlme in R), discussion of the output, and interpretation of each model`s results. Pedagogical Features: *Real, worked-through longitudinal data examples serving as illustrations in each chapter. *Script boxes that provide code for fitting the models to example data and facilitate application to the reader`s own data. *"Important Considerations" sections offering caveats, warnings, and recommendations for the use of specific models. *Companion website supplying datasets and syntax for the book`s examples, along with additional code in SAS/R for linear mixed-effects modeling.
Автор: Finch Название: Multilevel Modeling Using Mplus ISBN: 1498748244 ISBN-13(EAN): 9781498748247 Издательство: Taylor&Francis Рейтинг: Цена: 58170.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Designed primarily for upper level undergraduate and graduate level students taking a course in multilevel modelling and/or statistical modelling with a large multilevel modelling component. Presents the theory and practice of major multilevel modelling techniques using Mplus as the software tool.
Автор: Nussbaum E Michael Название: Categorical and Nonparametric Data Analysis ISBN: 1138787825 ISBN-13(EAN): 9781138787827 Издательство: Taylor&Francis Рейтинг: Цена: 81650.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Featuring in-depth coverage of categorical and nonparametric statistics, this book provides a conceptual framework for choosing the most appropriate type of test in various research scenarios. Class tested at the University of Nevada, the book's clear explanations of the underlying assumptions, computer simulations, and Exploring the Concept boxes help reduce reader anxiety. Problems inspired by actual studies provide meaningful illustrations of the techniques. The underlying assumptions of each test and the factors that impact validity and statistical power are reviewed so readers can explain their assumptions and how tests work in future publications. Numerous examples from psychology, education, and other social sciences demonstrate varied applications of the material. Basic statistics and probability are reviewed for those who need a refresher. Mathematical derivations are placed in optional appendices for those interested in this detailed coverage. Highlights include the following: Unique coverage of categorical and nonparametric statistics better prepares readers to select the best technique for their particular research project; however, some chapters can be omitted entirely if preferred. Step-by-step examples of each test help readers see how the material is applied in a variety of disciplines. Although the book can be used with any program, examples of how to use the tests in SPSS and Excel foster conceptual understanding. Exploring the Concept boxes integrated throughout prompt students to review key material and draw links between the concepts to deepen understanding. Problems in each chapter help readers test their understanding of the material. Emphasis on selecting tests that maximize power helps readers avoid "marginally" significant results. Website (www.routledge.com/9781138787827) features datasets for the book's examples and problems, and for the instructor, PowerPoint slides, sample syllabi, answers to the even-numbered problems, and Excel data sets for lecture purposes. Intended for individual or combined graduate or advanced undergraduate courses in categorical and nonparametric data analysis, cross-classified data analysis, advanced statistics and/or quantitative techniques taught in psychology, education, human development, sociology, political science, and other social and life sciences, the book also appeals to researchers in these disciplines. The nonparametric chapters can be deleted if preferred. Prerequisites include knowledge of t tests and ANOVA.
Featuring in-depth coverage of categorical and nonparametric statistics, this book provides a conceptual framework for choosing the most appropriate type of test in various research scenarios. Class tested at the University of Nevada, the book's clear explanations of the underlying assumptions, computer simulations, and Exploring the Concept boxes help reduce reader anxiety. Problems inspired by actual studies provide meaningful illustrations of the techniques. The underlying assumptions of each test and the factors that impact validity and statistical power are reviewed so readers can explain their assumptions and how tests work in future publications. Numerous examples from psychology, education, and other social sciences demonstrate varied applications of the material. Basic statistics and probability are reviewed for those who need a refresher. Mathematical derivations are placed in optional appendices for those interested in this detailed coverage.
Highlights include the following:
Unique coverage of categorical and nonparametric statistics better prepares readers to select the best technique for their particular research project; however, some chapters can be omitted entirely if preferred.
Step-by-step examples of each test help readers see how the material is applied in a variety of disciplines.
Although the book can be used with any program, examples of how to use the tests in SPSS and Excel foster conceptual understanding.
Exploring the Concept boxes integrated throughout prompt students to review key material and draw links between the concepts to deepen understanding.
Problems in each chapter help readers test their understanding of the material.
Emphasis on selecting tests that maximize power helps readers avoid "marginally" significant results.
Website (www.routledge.com/9781138787827) features datasets for the book's examples and problems, and for the instructor, PowerPoint slides, sample syllabi, answers to the even-numbered problems, and Excel data sets for lecture purposes.
Intended for individual or combined graduate or advanced undergraduate courses in categorical and nonparametric data analysis, cross-classified data analysis, advanced statistics and/or quantitative techniques taught in psychology, education, human development, sociology, political science, and other social and life sciences, the book also appeals to researchers in these disciplines. The nonparametric chapters can be deleted if preferred. Prerequisites include knowledge of t tests and ANOVA.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz