Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Multilevel Modeling of Categorical Outcomes Using IBM SPSS, Ronald H Heck, Scott Thomas, Lynn Tabata


Варианты приобретения
Цена: 148010.00T
Кол-во:
 о цене
Наличие: Невозможна поставка.

в Мои желания

Автор: Ronald H Heck, Scott Thomas, Lynn Tabata
Название:  Multilevel Modeling of Categorical Outcomes Using IBM SPSS
ISBN: 9781848729551
Издательство: Taylor&Francis
Классификация:



ISBN-10: 1848729553
Обложка/Формат: Hardcover
Страницы: 456
Вес: 1.29 кг.
Дата издания: 31.05.2012
Серия: Quantitative methodology series
Язык: English
Размер: 282 x 215 x 30
Читательская аудитория: Postgraduate, research & scholarly
Ключевые слова: Psychological methodology, EDUCATION / Statistics,PSYCHOLOGY / Statistics,SOCIAL SCIENCE / Statistics
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Европейский союз
Описание: This is the first workbook that introduces the multilevel approach to modeling with categorical outcomes using IBM SPSS Version 20. Readers learn how to develop, estimate, and interpret multilevel models with categorical outcomes. The authors walk readers through data management, diagnostic tools, model conceptualization, and model specification issues related to single-level and multilevel models with categorical outcomes. Screen shots clearly demonstrate techniques and navigation of the program. Modeling syntax is provided in the appendix. Examples of various types of categorical outcomes demonstrate how to set up each model and interpret the output. Extended examples illustrate the logic of model development, interpretation of output, the context of the research questions, and the steps around which the analyses are structured. Readers can replicate examples in each chapter by using the corresponding data and syntax files available at www.psypress.com/9781848729568. The book opens with a review of multilevel with categorical outcomes, followed by a chapter on IBM SPSS data management techniques to facilitate working with multilevel and longitudinal data sets. Chapters 3 and 4 detail the basics of the single-level and multilevel generalized linear model for various types of categorical outcomes. These chapters review underlying concepts to assist with trouble-shooting common programming and modeling problems. Next population-average and unit-specific longitudinal models for investigating individual or organizational developmental processes are developed. Chapter 6 focuses on single- and multilevel models using multinomial and ordinal data followed by a chapter on models for count data. The book concludes with additional trouble shooting techniques and tips for expanding on the modeling techniques introduced. Ideal as a supplement for graduate level courses and/or professional workshops on multilevel, longitudinal, latent variable modeling, multivariate statistics, and/or advanced quantitative techniques taught in psychology, business, education, health, and sociology, this practical workbook also appeals to researchers in these fields. An excellent follow up to the authors’ highly successful Multilevel and Longitudinal Modeling with IBM SPSS and Introduction to Multilevel Modeling Techniques, 2nd Edition, this book can also be used with any multilevel and/or longitudinal book or as a stand-alone text introducing multilevel modeling with categorical outcomes.

Growth Modeling: Structural Equation and Multilevel Modeling Approaches

Автор: Grimm Kevin J., Ram Nilam, Estabrook Ryne
Название: Growth Modeling: Structural Equation and Multilevel Modeling Approaches
ISBN: 1462526063 ISBN-13(EAN): 9781462526062
Издательство: Taylor&Francis
Рейтинг:
Цена: 75530.00 T
Наличие на складе: Невозможна поставка.
Описание: Growth models are among the core methods for analyzing how and when people change. Discussing both structural equation and multilevel modeling approaches, this book leads readers step by step through applying each model to longitudinal data to answer particular research questions. It demonstrates cutting-edge ways to describe linear and nonlinear change patterns, examine within-person and between-person differences in change, study change in latent variables, identify leading and lagging indicators of change, evaluate co-occurring patterns of change across multiple variables, and more. User-friendly features include real data examples, code (for Mplus or NLMIXED in SAS, and OpenMx or nlme in R), discussion of the output, and interpretation of each model`s results. Pedagogical Features: *Real, worked-through longitudinal data examples serving as illustrations in each chapter. *Script boxes that provide code for fitting the models to example data and facilitate application to the reader`s own data. *"Important Considerations" sections offering caveats, warnings, and recommendations for the use of specific models. *Companion website supplying datasets and syntax for the book`s examples, along with additional code in SAS/R for linear mixed-effects modeling.

Multilevel Modeling Using Mplus

Автор: Finch
Название: Multilevel Modeling Using Mplus
ISBN: 1498748244 ISBN-13(EAN): 9781498748247
Издательство: Taylor&Francis
Рейтинг:
Цена: 58170.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Designed primarily for upper level undergraduate and graduate level students taking a course in multilevel modelling and/or statistical modelling with a large multilevel modelling component. Presents the theory and practice of major multilevel modelling techniques using Mplus as the software tool.

Categorical and Nonparametric Data Analysis

Автор: Nussbaum E Michael
Название: Categorical and Nonparametric Data Analysis
ISBN: 1138787825 ISBN-13(EAN): 9781138787827
Издательство: Taylor&Francis
Рейтинг:
Цена: 81650.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Featuring in-depth coverage of categorical and nonparametric statistics, this book provides a conceptual framework for choosing the most appropriate type of test in various research scenarios. Class tested at the University of Nevada, the book's clear explanations of the underlying assumptions, computer simulations, and Exploring the Concept boxes help reduce reader anxiety. Problems inspired by actual studies provide meaningful illustrations of the techniques. The underlying assumptions of each test and the factors that impact validity and statistical power are reviewed so readers can explain their assumptions and how tests work in future publications. Numerous examples from psychology, education, and other social sciences demonstrate varied applications of the material. Basic statistics and probability are reviewed for those who need a refresher. Mathematical derivations are placed in optional appendices for those interested in this detailed coverage. Highlights include the following: Unique coverage of categorical and nonparametric statistics better prepares readers to select the best technique for their particular research project; however, some chapters can be omitted entirely if preferred. Step-by-step examples of each test help readers see how the material is applied in a variety of disciplines.  Although the book can be used with any program, examples of how to use the tests in SPSS and Excel foster conceptual understanding. Exploring the Concept boxes integrated throughout prompt students to review key material and draw links between the concepts to deepen understanding.  Problems in each chapter help readers test their understanding of the material.  Emphasis on selecting tests that maximize power helps readers avoid "marginally" significant results.  Website (www.routledge.com/9781138787827) features datasets for the book's examples and problems, and for the instructor, PowerPoint slides, sample syllabi, answers to the even-numbered problems, and Excel data sets for lecture purposes. Intended for individual or combined graduate or advanced undergraduate courses in categorical and nonparametric data analysis, cross-classified data analysis, advanced statistics and/or quantitative techniques taught in psychology, education, human development, sociology, political science, and other social and life sciences, the book also appeals to researchers in these disciplines. The nonparametric chapters can be deleted if preferred. Prerequisites include knowledge of t tests and ANOVA.

Categorical and Nonparametric Data Analysis: Choosing the Best Statistical Technique

Автор: Nussbaum E. Michael
Название: Categorical and Nonparametric Data Analysis: Choosing the Best Statistical Technique
ISBN: 1848726031 ISBN-13(EAN): 9781848726031
Издательство: Taylor&Francis
Рейтинг:
Цена: 183750.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Featuring in-depth coverage of categorical and nonparametric statistics, this book provides a conceptual framework for choosing the most appropriate type of test in various research scenarios. Class tested at the University of Nevada, the book's clear explanations of the underlying assumptions, computer simulations, and Exploring the Concept boxes help reduce reader anxiety. Problems inspired by actual studies provide meaningful illustrations of the techniques. The underlying assumptions of each test and the factors that impact validity and statistical power are reviewed so readers can explain their assumptions and how tests work in future publications. Numerous examples from psychology, education, and other social sciences demonstrate varied applications of the material. Basic statistics and probability are reviewed for those who need a refresher. Mathematical derivations are placed in optional appendices for those interested in this detailed coverage.

Highlights include the following:

  • Unique coverage of categorical and nonparametric statistics better prepares readers to select the best technique for their particular research project; however, some chapters can be omitted entirely if preferred.
  • Step-by-step examples of each test help readers see how the material is applied in a variety of disciplines.
  • Although the book can be used with any program, examples of how to use the tests in SPSS and Excel foster conceptual understanding.
  • Exploring the Concept boxes integrated throughout prompt students to review key material and draw links between the concepts to deepen understanding.
  • Problems in each chapter help readers test their understanding of the material.
  • Emphasis on selecting tests that maximize power helps readers avoid "marginally" significant results.
  • Website (www.routledge.com/9781138787827) features datasets for the book's examples and problems, and for the instructor, PowerPoint slides, sample syllabi, answers to the even-numbered problems, and Excel data sets for lecture purposes.

Intended for individual or combined graduate or advanced undergraduate courses in categorical and nonparametric data analysis, cross-classified data analysis, advanced statistics and/or quantitative techniques taught in psychology, education, human development, sociology, political science, and other social and life sciences, the book also appeals to researchers in these disciplines. The nonparametric chapters can be deleted if preferred. Prerequisites include knowledge of t tests and ANOVA.



Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия