Stability of Line Solitons for the KP-II Equation in R², Tetsu Mizumachi
Автор: R. MacKenzie; M.B. Paranjape; W.J. Zakrzewski Название: Solitons ISBN: 0387988955 ISBN-13(EAN): 9780387988955 Издательство: Springer Рейтинг: Цена: 163040.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Solitons were discovered by John Scott Russel in 1834, and have interested scientists and mathematicians ever since. Topics covered include mathematical and numerical aspects of solitons, as well as applications of solitons to nuclear and particle physics, cosmology, and condensed-matter physics.
Автор: Davydov Название: Solitons in Molecular Systems ISBN: 940173027X ISBN-13(EAN): 9789401730273 Издательство: Springer Рейтинг: Цена: 104480.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory;
Автор: R. MacKenzie; M.B. Paranjape; W.J. Zakrzewski Название: Solitons ISBN: 1461270634 ISBN-13(EAN): 9781461270638 Издательство: Springer Рейтинг: Цена: 93160.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Solitons were discovered by John Scott Russel in 1834, and have interested scientists and mathematicians ever since. Topics covered include mathematical and numerical aspects of solitons, as well as applications of solitons to nuclear and particle physics, cosmology, and condensed-matter physics.
Автор: Hongzi Cong, Jianjun Liu, Xiaoping Yuan Название: Stability of KAM Tori for Nonlinear Schrodinger Equation ISBN: 1470416573 ISBN-13(EAN): 9781470416577 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 78540.00 T Наличие на складе: Невозможна поставка. Описание: The authors prove the long time stability of KAM tori (thus quasi-periodic solutions) for nonlinear Schrodinger equation $$\sqrt{-1}\, u_{t}=u_{xx}-M_{\xi}u+\varepsilon|u|^2u,$$ subject to Dirichlet boundary conditions $u(t,0)=u(t,\pi)=0$, where $M_{\xi}$ is a real Fourier multiplier.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz