Compactifications Of Pel-type Shimura Varieties And Kuga Families With Ordinary Loci, Lan Kai-wen
Автор: Michio Kuga Название: Kuga Varieties: Fiber Varieties Over a Symmetric Space Whose Fibers are Abelian Varieties ISBN: 7040503042 ISBN-13(EAN): 9787040503043 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 60990.00 T Наличие на складе: Невозможна поставка. Описание: Kuga varieties are fiber varieties over symmetric spaces whose fibers are abelian varieties and have played an important role in the theory of Shimura varieties and number theory. This book is the first systematic exposition of these varieties and was written by their creators. It contains four chapters. Chapter 1 gives a detailed generalization to vector valued harmonic forms. These results are applied to construct Kuga varieties in Chapter 2 and to understand their cohomology groups. Chapter 3 studies Hecke operators, which are the most basic operators in modular forms. All the previous results are applied in Chapter 4 to prove the modularity property of certain Kuga varieties. Note that the modularity property of elliptic curves is the key ingredient of Wiles' proof of Fermat's Last Theorem. This book also contains one of Weil's letters and a paper by Satake which are relevant to the topic of the book.
Автор: Hida, Haruzo Название: P-adic automorphic forms on shimura varieties ISBN: 1441919236 ISBN-13(EAN): 9781441919236 Издательство: Springer Рейтинг: Цена: 153720.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: In the early years of the 1980s, while I was visiting the Institute for Ad- vanced Study (lAS) at Princeton as a postdoctoral member, I got a fascinating view, studying congruence modulo a prime among elliptic modular forms, that an automorphic L-function of a given algebraic group G should have a canon- ical p-adic counterpart of several variables. I immediately decided to find out the reason behind this phenomenon and to develop the theory of ordinary p-adic automorphic forms, allocating 10 to 15 years from that point, putting off the intended arithmetic study of Shimura varieties via L-functions and Eisenstein series (for which I visited lAS). Although it took more than 15 years, we now know (at least conjecturally) the exact number of variables for a given G, and it has been shown that this is a universal phenomenon valid for holomorphic automorphic forms on Shimura varieties and also for more general (nonholomorphic) cohomological automorphic forms on automorphic manifolds (in a markedly different way). When I was asked to give a series of lectures in the Automorphic Semester in the year 2000 at the Emile Borel Center (Centre Emile Borel) at the Poincare Institute in Paris, I chose to give an exposition of the theory of p-adic (ordinary) families of such automorphic forms p-adic analytically de- pending on their weights, and this book is the outgrowth of the lectures given there.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz