Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Compactifications Of Pel-type Shimura Varieties And Kuga Families With Ordinary Loci, Lan Kai-wen


Варианты приобретения
Цена: 195360.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 174 шт.  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Lan Kai-wen
Название:  Compactifications Of Pel-type Shimura Varieties And Kuga Families With Ordinary Loci
ISBN: 9789813207325
Издательство: World Scientific Publishing
Классификация:
ISBN-10: 9813207329
Обложка/Формат: Hardcover
Страницы: 580
Вес: 1.16 кг.
Дата издания: 11.09.2017
Серия: Mathematics
Язык: English
Размер: 170 x 244 x 33
Читательская аудитория: Tertiary education (us: college)
Ключевые слова: Number theory, MATHEMATICS / Algebra / Abstract,MATHEMATICS / Geometry / Algebraic,MATHEMATICS / Number Theory
Рейтинг:
Поставляется из: Англии
Описание:

This book is a comprehensive treatise on the partial toroidal and minimal compactifications of the ordinary loci of PEL-type Shimura varieties and Kuga families, and on the canonical and subcanonical extensions of automorphic bundles. The results in this book serve as the logical foundation of several recent developments in the theory of p-adic automorphic forms; and of the authors work with Harris, Taylor, and Thorne on the construction of Galois representations without any polarizability conditions, which is a major breakthrough in the Langlands program.

This book is important for active researchers and graduate students who need to understand the above-mentioned recent works, and is written with such users of the theory in mind, providing plenty of explanations and background materials, which should be helpful for people working in similar areas. It also contains precise internal and external references, and an index of notation and terminologies. These are useful for readers to quickly locate materials they need.



Kuga Varieties: Fiber Varieties Over a Symmetric Space Whose Fibers are Abelian Varieties

Автор: Michio Kuga
Название: Kuga Varieties: Fiber Varieties Over a Symmetric Space Whose Fibers are Abelian Varieties
ISBN: 7040503042 ISBN-13(EAN): 9787040503043
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 60990.00 T
Наличие на складе: Невозможна поставка.
Описание: Kuga varieties are fiber varieties over symmetric spaces whose fibers are abelian varieties and have played an important role in the theory of Shimura varieties and number theory. This book is the first systematic exposition of these varieties and was written by their creators. It contains four chapters. Chapter 1 gives a detailed generalization to vector valued harmonic forms. These results are applied to construct Kuga varieties in Chapter 2 and to understand their cohomology groups. Chapter 3 studies Hecke operators, which are the most basic operators in modular forms. All the previous results are applied in Chapter 4 to prove the modularity property of certain Kuga varieties. Note that the modularity property of elliptic curves is the key ingredient of Wiles' proof of Fermat's Last Theorem. This book also contains one of Weil's letters and a paper by Satake which are relevant to the topic of the book.

P-adic automorphic forms on shimura varieties

Автор: Hida, Haruzo
Название: P-adic automorphic forms on shimura varieties
ISBN: 1441919236 ISBN-13(EAN): 9781441919236
Издательство: Springer
Рейтинг:
Цена: 153720.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In the early years of the 1980s, while I was visiting the Institute for Ad- vanced Study (lAS) at Princeton as a postdoctoral member, I got a fascinating view, studying congruence modulo a prime among elliptic modular forms, that an automorphic L-function of a given algebraic group G should have a canon- ical p-adic counterpart of several variables. I immediately decided to find out the reason behind this phenomenon and to develop the theory of ordinary p-adic automorphic forms, allocating 10 to 15 years from that point, putting off the intended arithmetic study of Shimura varieties via L-functions and Eisenstein series (for which I visited lAS). Although it took more than 15 years, we now know (at least conjecturally) the exact number of variables for a given G, and it has been shown that this is a universal phenomenon valid for holomorphic automorphic forms on Shimura varieties and also for more general (nonholomorphic) cohomological automorphic forms on automorphic manifolds (in a markedly different way). When I was asked to give a series of lectures in the Automorphic Semester in the year 2000 at the Emile Borel Center (Centre Emile Borel) at the Poincare Institute in Paris, I chose to give an exposition of the theory of p-adic (ordinary) families of such automorphic forms p-adic analytically de- pending on their weights, and this book is the outgrowth of the lectures given there.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия