Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Deep Learning for Computer Architects, Brandon Reagen, Robert Adolf, Paul Whatmough, Gu-Yeon Wei, David Brooks


Варианты приобретения
Цена: 76690.00T
Кол-во:
 о цене
Наличие: Невозможна поставка.

в Мои желания

Автор: Brandon Reagen, Robert Adolf, Paul Whatmough, Gu-Yeon Wei, David Brooks
Название:  Deep Learning for Computer Architects
ISBN: 9781681732190
Издательство: Mare Nostrum (Eurospan)
Классификация:


ISBN-10: 168173219X
Обложка/Формат: Hardcover
Страницы: 123
Вес: 0.43 кг.
Дата издания: 30.08.2017
Серия: Synthesis lectures on computer architecture
Язык: English
Размер: 235 x 191 x 8
Ключевые слова: Computer architecture & logic design,Artificial intelligence,Neural networks & fuzzy systems
Рейтинг:
Поставляется из: Англии
Описание: A primer for computer architects in a new and rapidly evolving field. The authors review how machine learning has evolved since its inception in the 1960s and track the key developments leading up to the emergence of the powerful deep learning techniques that have emerged in the last decade.

Deep Learning

Автор: Goodfellow Ian, Bengio Yoshua, Courville Aaron
Название: Deep Learning
ISBN: 0262035618 ISBN-13(EAN): 9780262035613
Издательство: MIT Press
Рейтинг:
Цена: 90290.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.

"Written by three experts in the field, Deep Learning is the only comprehensive book on the subject."
-- Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX

Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.

The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.

Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.


An Introduction to Machine Learning

Автор: Miroslav Kubat
Название: An Introduction to Machine Learning
ISBN: 3319348868 ISBN-13(EAN): 9783319348865
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents basic ideas of machine learning in a way that is easy to understand, by providing hands-on practical advice, using simple examples, and motivating students with discussions of interesting applications.

Deep Learning and the Game of Go

Автор: Pumperla Max, Ferguson Kevin
Название: Deep Learning and the Game of Go
ISBN: 1617295329 ISBN-13(EAN): 9781617295324
Издательство: Неизвестно
Рейтинг:
Цена: 58070.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Summary

Deep Learning and the Game of Go teaches you how to apply the power of deep learning to complex reasoning tasks by building a Go-playing AI. After exposing you to the foundations of machine and deep learning, you'll use Python to build a bot and then teach it the rules of the game.

Foreword by Thore Graepel, DeepMind

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the Technology

The ancient strategy game of Go is an incredible case study for AI. In 2016, a deep learning-based system shocked the Go world by defeating a world champion. Shortly after that, the upgraded AlphaGo Zero crushed the original bot by using deep reinforcement learning to master the game. Now, you can learn those same deep learning techniques by building your own Go bot

About the Book

Deep Learning and the Game of Go introduces deep learning by teaching you to build a Go-winning bot. As you progress, you'll apply increasingly complex training techniques and strategies using the Python deep learning library Keras. You'll enjoy watching your bot master the game of Go, and along the way, you'll discover how to apply your new deep learning skills to a wide range of other scenarios

What's inside

  • Build and teach a self-improving game AI
  • Enhance classical game AI systems with deep learning
  • Implement neural networks for deep learning

About the Reader

All you need are basic Python skills and high school-level math. No deep learning experience required.

About the Author

Max Pumperla and Kevin Ferguson are experienced deep learning specialists skilled in distributed systems and data science. Together, Max and Kevin built the open source bot BetaGo.

Table of Contents

    PART 1 - FOUNDATIONS
  1. Toward deep learning: a machine-learning introduction
  2. Go as a machine-learning problem
  3. Implementing your first Go bot
  4. PART 2 - MACHINE LEARNING AND GAME AI
  5. Playing games with tree search
  6. Getting started with neural networks
  7. Designing a neural network for Go data
  8. Learning from data: a deep-learning bot
  9. Deploying bots in the wild
  10. Learning by practice: reinforcement learning
  11. Reinforcement learning with policy gradients
  12. Reinforcement learning with value methods
  13. Reinforcement learning with actor-critic methods
  14. PART 3 - GREATER THAN THE SUM OF ITS PARTS
  15. AlphaGo: Bringing it all together
  16. AlphaGo Zero: Integrating tree search with reinforcement learning

Deep Reinforcement Learning Hands-On: Apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more

Автор: Lapan Maxim
Название: Deep Reinforcement Learning Hands-On: Apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more
ISBN: 1788834240 ISBN-13(EAN): 9781788834247
Издательство: Неизвестно
Рейтинг:
Цена: 60070.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is a practical, developer-oriented introduction to deep reinforcement learning (RL). Explore the theoretical concepts of RL, before discovering how deep learning (DL) methods and tools are making it possible to solve more complex and challenging problems than ever before. Apply deep RL methods to training your agent to beat arcade ...

Intelligent Adaptation and Personalization Techniques in Computer-Supported Collaborative Learning

Автор: Thanasis Daradoumis; Stavros N. Demetriadis; Fatos
Название: Intelligent Adaptation and Personalization Techniques in Computer-Supported Collaborative Learning
ISBN: 3642447686 ISBN-13(EAN): 9783642447686
Издательство: Springer
Рейтинг:
Цена: 121890.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book reviews and analyzes new implementation perspectives for intelligent adaptive learning and collaborative systems, enabled by advances in scripting languages, IMS LD, educational modeling languages and learning activity management systems.

Cognitive Computing: Implementing Big Data Machine Learning Solutions

Автор: Hurwitz, Kaufman Marcia, Bowles Adrian
Название: Cognitive Computing: Implementing Big Data Machine Learning Solutions
ISBN: 1118896629 ISBN-13(EAN): 9781118896624
Издательство: Wiley
Рейтинг:
Цена: 40120.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A comprehensive guide to learning technologies that unlock the value in big data Cognitive Computing provides detailed guidance toward building a new class of systems that learn from experience and derive insights to unlock the value of big data.

Computer-Human Interaction. Cognitive Effects of Spatial Interaction, Learning, and Ability

Автор: Theodor Wyeld; Paul Calder; Haifeng Shen
Название: Computer-Human Interaction. Cognitive Effects of Spatial Interaction, Learning, and Ability
ISBN: 3319169394 ISBN-13(EAN): 9783319169392
Издательство: Springer
Рейтинг:
Цена: 44720.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the thoroughly refereed post-conference proceedings of the 25th Australian Conference on Computer-Human Interaction, OzCHI 2013, held in Adelaide, SA, Australia, in November 2013. The 11 revised extended papers were carefully reviewed and selected from 192 submissions and cover topics on multi-dimensional interaction;

Smart Learning Objects for Smart Education in Computer Science

Автор: Vytautas ?tuikys
Название: Smart Learning Objects for Smart Education in Computer Science
ISBN: 3319169122 ISBN-13(EAN): 9783319169125
Издательство: Springer
Рейтинг:
Цена: 88500.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This monograph presents the challenges, vision and context to design smart learning objects (SLOs) through Computer Science (CS) education modelling and feature model transformations. It presents the latest research on the meta-programming-based generative learning objects (the latter with advanced features are treated as SLOs) and the use of educational robots in teaching CS topics. The introduced methodology includes the overall processes to develop SLO and smart educational environment (SEE) and integrates both into the real education setting to provide teaching in CS using constructivist and project-based approaches along with evaluation of pedagogic outcomes.

Smart Learning Objects for Smart Education in Computer Science will appeal to researchers in CS education particularly those interested in using robots in teaching, course designers and educational software and tools developers. With research and exercise questions at the end of each chapter students studying CS related courses will find this work informative and valuable too.


Smart Learning Objects for Smart Education in Computer Science

Автор: Vytautas ?tuikys
Название: Smart Learning Objects for Smart Education in Computer Science
ISBN: 3319386638 ISBN-13(EAN): 9783319386638
Издательство: Springer
Рейтинг:
Цена: 88500.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This monograph presents the challenges, vision and context to design smart learning objects (SLOs) through Computer Science (CS) education modelling and feature model transformations. It presents the latest research on the meta-programming-based generative learning objects (the latter with advanced features are treated as SLOs) and the use of educational robots in teaching CS topics. The introduced methodology includes the overall processes to develop SLO and smart educational environment (SEE) and integrates both into the real education setting to provide teaching in CS using constructivist and project-based approaches along with evaluation of pedagogic outcomes.

Smart Learning Objects for Smart Education in Computer Science will appeal to researchers in CS education particularly those interested in using robots in teaching, course designers and educational software and tools developers. With research and exercise questions at the end of each chapter students studying CS related courses will find this work informative and valuable too.


Computer Age Statistical Inference

Автор: Bradley Efron and Trevor Hastie
Название: Computer Age Statistical Inference
ISBN: 1107149894 ISBN-13(EAN): 9781107149892
Издательство: Cambridge Academ
Рейтинг:
Цена: 60190.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

AI for Data Science: Artificial Intelligence Frameworks and Functionality for Deep Learning, Optimization, and Beyond

Автор: Zacharias Voulgaris, Yunus Bulut
Название: AI for Data Science: Artificial Intelligence Frameworks and Functionality for Deep Learning, Optimization, and Beyond
ISBN: 1634624092 ISBN-13(EAN): 9781634624091
Издательство: Gazelle Book Services
Рейтинг:
Цена: 81490.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Master the approaches and principles of Artificial Intelligence (AI) algorithms, and apply them to Data Science projects with Python and Julia code.

Computational Texture and Patterns: From Textons to Deep Learning

Автор: Kristin J. Dana
Название: Computational Texture and Patterns: From Textons to Deep Learning
ISBN: 1681730111 ISBN-13(EAN): 9781681730110
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 51750.00 T
Наличие на складе: Невозможна поставка.
Описание: Visual pattern analysis is a fundamental tool in mining data for knowledge. Computational representations for patterns and texture allow us to summarize, store, compare, and label in order to learn about the physical world. Our ability to capture visual imagery with cameras and sensors has resulted in vast amounts of raw data, but using this information effectively in a task-specific manner requires sophisticated computational representations. We enumerate specific desirable traits for these representations: (1) intraclass invariance—to support recognition; (2) illumination and geometric invariance for robustness to imaging conditions; (3) support for prediction and synthesis to use the model to infer continuation of the pattern; (4) support for change detection to detect anomalies and perturbations; and (5) support for physics-based interpretation to infer system properties from appearance. In recent years, computer vision has undergone a metamorphosis with classic algorithms adapting to new trends in deep learning. This text provides a tour of algorithm evolution including pattern recognition, segmentation and synthesis. We consider the general relevance and prominence of visual pattern analysis and applications that rely on computational models.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия