Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Multimodal Scene Understanding, Yang, Michael


Варианты приобретения
Цена: 123520.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 244 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Yang, Michael
Название:  Multimodal Scene Understanding
ISBN: 9780128173589
Издательство: Elsevier Science
Классификация:


ISBN-10: 0128173580
Обложка/Формат: Paperback
Страницы: 525
Вес: 0.73 кг.
Дата издания: 01.08.2019
Язык: English
Размер: 235 x 191 x 22
Основная тема: 008 Reference
Подзаголовок: Algorithms, applications and deep learning
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Европейский союз
Описание:

Multimodal Scene Understanding: Algorithms, Applications and Deep Learning presents recent advances in multi-modal computing, with a focus on computer vision and photogrammetry, providing the latest algorithms and applications that involve combining multiple sources of information. Uniquely, it describes the role and approaches of multi-sensory data and multi-modal deep learning.

The book is ideal for researchers from the fields of computer vision, remote sensing, robotics, and photogrammetry, helping to foster interdisciplinary interaction and collaboration between them. It will be very relevant to researchers collecting and analyzing multi-sensory data collections - for example, KITTI benchmark (stereo+laser) - from different platforms, such as autonomous vehicles, surveillance cameras, UAVs, planes and satellites.

  • Contains State-of-the-art development on multi-modal computing
  • A focus on algorithms and applications
  • Gives novel deep learning topics on multi-sensor fusion
  • Presents Multi-modal deep learning


Multimodal Learning toward Micro-Video Understanding

Автор: Nie Liqiang, Liu Meng, Song Xuemeng
Название: Multimodal Learning toward Micro-Video Understanding
ISBN: 1681736306 ISBN-13(EAN): 9781681736303
Издательство: Mare Nostrum (Eurospan)
Цена: 103490.00 T
Наличие на складе: Нет в наличии.
Описание:

Micro-videos, a new form of user-generated content, have been spreading widely across various social platforms, such as Vine, Kuaishou, and TikTok.

Different from traditional long videos, micro-videos are usually recorded by smart mobile devices at any place within a few seconds. Due to their brevity and low bandwidth cost, micro-videos are gaining increasing user enthusiasm. The blossoming of micro-videos opens the door to the possibility of many promising applications, ranging from network content caching to online advertising. Thus, it is highly desirable to develop an effective scheme for high-order micro-video understanding.

Micro-video understanding is, however, non-trivial due to the following challenges: (1) how to represent micro-videos that only convey one or few high-level themes or concepts; (2) how to utilize the hierarchical structure of venue categories to guide micro-video analysis; (3) how to alleviate the influence of low quality caused by complex surrounding environments and camera shake; (4) how to model multimodal sequential data, i.e. textual, acoustic, visual, and social modalities to enhance micro-video understanding; and (5) how to construct large-scale benchmark datasets for analysis. These challenges have been largely unexplored to date.

In this book, we focus on addressing the challenges presented above by proposing some state-of-the-art multimodal learning theories. To demonstrate the effectiveness of these models, we apply them to three practical tasks of micro-video understanding: popularity prediction, venue category estimation, and micro-video routing. Particularly, we first build three large-scale real-world micro-video datasets for these practical tasks. We then present a multimodal transductive learning framework for micro-video popularity prediction. Furthermore, we introduce several multimodal cooperative learning approaches and a multimodal transfer learning scheme for micro-video venue category estimation. Meanwhile, we develop a multimodal sequential learning approach for micro-video recommendation. Finally, we conclude the book and figure out the future research directions in multimodal learning toward micro-video understanding.


Multimodal Learning toward Micro-Video Understanding

Автор: Nie Liqiang, Liu Meng, Song Xuemeng
Название: Multimodal Learning toward Micro-Video Understanding
ISBN: 1681736284 ISBN-13(EAN): 9781681736280
Издательство: Mare Nostrum (Eurospan)
Цена: 82230.00 T
Наличие на складе: Нет в наличии.
Описание:

Micro-videos, a new form of user-generated content, have been spreading widely across various social platforms, such as Vine, Kuaishou, and TikTok.

Different from traditional long videos, micro-videos are usually recorded by smart mobile devices at any place within a few seconds. Due to their brevity and low bandwidth cost, micro-videos are gaining increasing user enthusiasm. The blossoming of micro-videos opens the door to the possibility of many promising applications, ranging from network content caching to online advertising. Thus, it is highly desirable to develop an effective scheme for high-order micro-video understanding.

Micro-video understanding is, however, non-trivial due to the following challenges: (1) how to represent micro-videos that only convey one or few high-level themes or concepts; (2) how to utilize the hierarchical structure of venue categories to guide micro-video analysis; (3) how to alleviate the influence of low quality caused by complex surrounding environments and camera shake; (4) how to model multimodal sequential data, i.e. textual, acoustic, visual, and social modalities to enhance micro-video understanding; and (5) how to construct large-scale benchmark datasets for analysis. These challenges have been largely unexplored to date.

In this book, we focus on addressing the challenges presented above by proposing some state-of-the-art multimodal learning theories. To demonstrate the effectiveness of these models, we apply them to three practical tasks of micro-video understanding: popularity prediction, venue category estimation, and micro-video routing. Particularly, we first build three large-scale real-world micro-video datasets for these practical tasks. We then present a multimodal transductive learning framework for micro-video popularity prediction. Furthermore, we introduce several multimodal cooperative learning approaches and a multimodal transfer learning scheme for micro-video venue category estimation. Meanwhile, we develop a multimodal sequential learning approach for micro-video recommendation. Finally, we conclude the book and figure out the future research directions in multimodal learning toward micro-video understanding.


Multimodal Behavior Analysis in the Wild

Автор: Alameda-Pineda, Xavier
Название: Multimodal Behavior Analysis in the Wild
ISBN: 012814601X ISBN-13(EAN): 9780128146019
Издательство: Elsevier Science
Рейтинг:
Цена: 151590.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Multimodal Behavioral Analysis in the Wild: Advances and Challenges presents the state-of- the-art in behavioral signal processing using different data modalities, with a special focus on identifying the strengths and limitations of current technologies. The book focuses on audio and video modalities, while also emphasizing emerging modalities, such as accelerometer or proximity data. It covers tasks at different levels of complexity, from low level (speaker detection, sensorimotor links, source separation), through middle level (conversational group detection, addresser and addressee identification), and high level (personality and emotion recognition), providing insights on how to exploit inter-level and intra-level links.

This is a valuable resource on the state-of-the- art and future research challenges of multi-modal behavioral analysis in the wild. It is suitable for researchers and graduate students in the fields of computer vision, audio processing, pattern recognition, machine learning and social signal processing.

  • Gives a comprehensive collection of information on the state-of-the-art, limitations, and challenges associated with extracting behavioral cues from real-world scenarios
  • Presents numerous applications on how different behavioral cues have been successfully extracted from different data sources
  • Provides a wide variety of methodologies used to extract behavioral cues from multi-modal data

Multimodal Brain Image Analysis

Автор: Li Shen; Tianming Liu; Pew-Thian Yap; Heng Huang;
Название: Multimodal Brain Image Analysis
ISBN: 3319021257 ISBN-13(EAN): 9783319021256
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the refereed proceedings of the Third International Workshop on Multimodal Brain Image Analysis, MBIA 2013, held in Nagoya, Japan, on September 22, 2013 in conjunction with the 16th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI.

Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy

Автор: Dajiang Zhu; Jingwen Yan; Heng Huang; Li Shen; Pau
Название: Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy
ISBN: 303033225X ISBN-13(EAN): 9783030332259
Издательство: Springer
Рейтинг:
Цена: 54030.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: MBIA.- Non-rigid Registration of White Matter Tractography Using Coherent Point Drift Algorithm.- An Edge Enhanced SRGAN for MRI Super Resolution in Slice-selection Direction.- Exploring Functional Connectivity Biomarker in Autism Using Group-wise Sparse Representation.- Classifying Stages of Mild Cognitive Impairment via Augmented Graph Embedding.- Mapping the spatio-temporal functional coherence in the resting brain.- Species-Preserved Structural Connections Revealed by Sparse Tensor CCA.- Identification of Abnormal Cortical 3-hinge Folding Patterns on Autism Spectral Brains.- Exploring Brain Hemodynamic Response Patterns Via Deep Recurrent Autoencoder.- 3D Convolutional Long-short Term Memory Network for Spatiotemporal Modeling of fMRI Data.- Biological Knowledge Guided Deep Neural Network for Genotype-Phenotype Association Study.- Learning Human Cognition via fMRI Analysis Using 3D CNN and Graph Neural Network.- CU-Net: Cascaded U-Net with Loss Weighted Sampling for Brain Tumor Segmentation.- BrainPainter: A software for the visualisation of brain structures, biomarkers and associated pathological processes.- Structural Similarity based Anatomical and Functional Brain Imaging Fusion.- Multimodal Brain Tumor Segmentation Using Encoder-Decoder with Hierarchical Separable Convolution.- Prioritizing Amyloid Imaging Biomarkers in Alzheimer's Disease via Learning to Rank.- MFCA.- Diffeomorphic Metric Learning and Template Optimization for Registration-Based Predictive Models.- 3D mapping of serial histology sections with anomalies using a novel robust deformable registration algorithm.- Spatiotemporal Modeling for Image Time Series with Appearance Change: Application to Early Brain Development.- Surface Foliation Based Brain Morphometry Analysis.- Mixture Probabilistic Principal Geodesic Analysis.- A Geodesic Mixed Effects Model in Kendall's Shape Space.- An as-invariant-as-possible GL+(3)-based Statistical Shape Model.

Multimodal Sentiment Analysis

Автор: Soujanya Poria; Amir Hussain; Erik Cambria
Название: Multimodal Sentiment Analysis
ISBN: 3030069567 ISBN-13(EAN): 9783030069568
Издательство: Springer
Рейтинг:
Цена: 139750.00 T
Наличие на складе: Поставка под заказ.
Описание: This latest volume in the series, Socio-Affective Computing, presents a set of novel approaches to analyze opinionated videos and to extract sentiments and emotions. Textual sentiment analysis framework as discussed in this book contains a novel way of doing sentiment analysis by merging linguistics with machine learning. Fusing textual information with audio and visual cues is found to be extremely useful which improves text, audio and visual based unimodal sentiment analyzer. This volume covers the three main topics of: textual preprocessing and sentiment analysis methods; frameworks to process audio and visual data; and methods of textual, audio and visual features fusion.The inclusion of key visualization and case studies will enable readers to understand better these approaches. Aimed at the Natural Language Processing, Affective Computing and Artificial Intelligence audiences, this comprehensive volume will appeal to a wide readership and will help readers to understand key details on multimodal sentiment analysis.

Machine Learning Systems for Multimodal Affect Recognition

Автор: Markus K?chele
Название: Machine Learning Systems for Multimodal Affect Recognition
ISBN: 3658286733 ISBN-13(EAN): 9783658286736
Издательство: Springer
Рейтинг:
Цена: 60550.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Markus Kachele offers a detailed view on the different steps in the affective computing pipeline, ranging from corpus design and recording over annotation and feature extraction to post-processing, classification of individual modalities and fusion in the context of ensemble classifiers.

Biometric ID Management and Multimodal Communication

Автор: Julian Fierrez; Javier Ortega-Garcia; Anna Esposit
Название: Biometric ID Management and Multimodal Communication
ISBN: 3642043909 ISBN-13(EAN): 9783642043901
Издательство: Springer
Рейтинг:
Цена: 69870.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the research papers presented at the Joint 2101 & 2102 International Conference on Biometric ID Management and Multimodal Communication. COST 2101 Action is focused on `Biometrics for Identity Documents and Smart Cards (BIDS)`, while COST 2102 Action is entitled `Cross-Modal Analysis of Verbal and Non-verbal Communication`.

Multimodal Pattern Recognition of Social Signals in Human-Computer-Interaction

Автор: Friedhelm Schwenker; Stefan Scherer
Название: Multimodal Pattern Recognition of Social Signals in Human-Computer-Interaction
ISBN: 3030209830 ISBN-13(EAN): 9783030209834
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the refereed post-workshop proceedings of the 5th IAPR TC9 Workshop on Pattern Recognition of Social Signals in Human-Computer-Interaction, MPRSS 2018, held in Beijing, China, in August 2018. The 10 revised papers presented in this book focus on pattern recognition, machine learning and information fusion methods with applications in social signal processing, including multimodal emotion recognition and pain intensity estimation, especially the question how to distinguish between human emotions from pain or stress induced by pain is discussed.

Multimodal Biometrics And Intelligent Image Processing For Security System

Автор: Gavrilova & Monwar
Название: Multimodal Biometrics And Intelligent Image Processing For Security System
ISBN: 1466636467 ISBN-13(EAN): 9781466636460
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 189420.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Although it is a relatively new approach to biometric knowledge representation, multimodal biometric systems have emerged as an innovative alternative that aids in developing a more reliable and efficient security system. <br><br><em>Multimodal Biometrics and Intelligent Image Processing for Security Systems</em> provides an in-depth description of existing and fresh fusion approaches for multimodal biometric systems. Covering relevant topics affecting the security and intelligent industries, this reference will be useful for readers from both academia and industry in the areas of pattern recognition, security, and image processing domains.

Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support

Автор: Danail Stoyanov; Zeike Taylor; Gustavo Carneiro; T
Название: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
ISBN: 3030008886 ISBN-13(EAN): 9783030008888
Издательство: Springer
Рейтинг:
Цена: 61480.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the refereed joint proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2018, and the 8th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2018, held in conjunction with the 21st International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018, in Granada, Spain, in September 2018.The 39 full papers presented at DLMIA 2018 and the 4 full papers presented at ML-CDS 2018 were carefully reviewed and selected from 85 submissions to DLMIA and 6 submissions to ML-CDS. The DLMIA papers focus on the design and use of deep learning methods in medical imaging. The ML-CDS papers discuss new techniques of multimodal mining/retrieval and their use in clinical decision support.

Machine Learning for Multimodal Interaction

Автор: Andrei Popescu-Belis; Rainer Stiefelhagen
Название: Machine Learning for Multimodal Interaction
ISBN: 3540858520 ISBN-13(EAN): 9783540858522
Издательство: Springer
Рейтинг:
Цена: 69870.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Constitutes the refereed proceedings of the 5th International Workshop on Machine Learning for Multimodal Interaction, MLMI 2008, held in Utrecht, The Netherlands, in September 2008. This title features papers that cover a wide range of topics related to human-human communication modeling and processing, as well as to human-computer interaction.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия