Автор: Kevin Murphy Название: Machine Learning ISBN: 0262018020 ISBN-13(EAN): 9780262018029 Издательство: MIT Press Рейтинг: Цена: 124150.00 T Наличие на складе: Невозможна поставка. Описание:
A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.
Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.
The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package -- PMTK (probabilistic modeling toolkit) -- that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Автор: Venkat G. Название: Rapid Modernization of Java Applications: A Practical Guide to Technical and Business Solutions ISBN: 0071842039 ISBN-13(EAN): 9780071842037 Издательство: McGraw-Hill Рейтинг: Цена: 67490.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Implement a Java application portfolio modernization strategy that saves time, eliminates risk, and maximizes benefits
Автор: Darren Cook Название: Practical Machine Learning with H2O ISBN: 149196460X ISBN-13(EAN): 9781491964606 Издательство: Wiley Рейтинг: Цена: 42230.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This hands-on guide teaches you how to use H20 with only minimal math and theory behind the learning algorithms.
Автор: Dipanjan Sarkar; Raghav Bali; Tushar Sharma Название: Practical Machine Learning with Python ISBN: 1484232062 ISBN-13(EAN): 9781484232064 Издательство: Springer Рейтинг: Цена: 46570.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание:
Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning. Using real-world examples that leverage the popular Python machine learning ecosystem, this book is your perfect companion for learning the art and science of machine learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute machine learning systems and projects successfully.
Practical Machine Learning with Python follows a structured and comprehensive three-tiered approach packed with hands-on examples and code.
Part 1 focuses on understanding machine learning concepts and tools. This includes machine learning basics with a broad overview of algorithms, techniques, concepts and applications, followed by a tour of the entire Python machine learning ecosystem. Brief guides for useful machine learning tools, libraries and frameworks are also covered.
Part 2 details standard machine learning pipelines, with an emphasis on data processing analysis, feature engineering, and modeling. You will learn how to process, wrangle, summarize and visualize data in its various forms. Feature engineering and selection methodologies will be covered in detail with real-world datasets followed by model building, tuning, interpretation and deployment.
Part 3 explores multiple real-world case studies spanning diverse domains and industries like retail, transportation, movies, music, marketing, computer vision and finance. For each case study, you will learn the application of various machine learning techniques and methods. The hands-on examples will help you become familiar with state-of-the-art machine learning tools and techniques and understand what algorithms are best suited for any problem.
Practical Machine Learning with Python will empower you to start solving your own problems with machine learning today
What You'll Learn
Execute end-to-end machine learning projects and systems
Implement hands-on examples with industry standard, open source, robust machine learning tools and frameworks
Review case studies depicting applications of machine learning and deep learning on diverse domains and industries
Apply a wide range of machine learning models including regression, classification, and clustering.
Understand and apply the latest models and methodologies from deep learning including CNNs, RNNs, LSTMs and transfer learning.
Who This Book Is For IT professionals, analysts, developers, data scientists, engineers, graduate students
Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques: A MATLAB Based Approach presents how machine learning and biomedical signal processing methods can be used in biomedical signal analysis. Different machine learning applications in biomedical signal analysis, including those for electrocardiogram, electroencephalogram and electromyogram are described in a practical and comprehensive way, helping readers with limited knowledge. Sections cover biomedical signals and machine learning techniques, biomedical signals, such as electroencephalogram (EEG), electromyogram (EMG) and electrocardiogram (ECG), different signal-processing techniques, signal de-noising, feature extraction and dimension reduction techniques, such as PCA, ICA, KPCA, MSPCA, entropy measures, and other statistical measures, and more.
This book is a valuable source for bioinformaticians, medical doctors and other members of the biomedical field who need a cogent resource on the most recent and promising machine learning techniques for biomedical signals analysis.
Provides comprehensive knowledge in the application of machine learning tools in biomedical signal analysis for medical diagnostics, brain computer interface and man/machine interaction
Explains how to apply machine learning techniques to EEG, ECG and EMG signals
Gives basic knowledge on predictive modeling in biomedical time series and advanced knowledge in machine learning for biomedical time series
Автор: Parteek Bhatia Название: Data Mining and Data Warehousing: Principles and Practical Techniques ISBN: 1108727743 ISBN-13(EAN): 9781108727747 Издательство: Cambridge Academ Рейтинг: Цена: 71810.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This textbook gives an in-depth discussion of basic principles and practical techniques of data mining and data warehousing. Theoretical concepts are discussed in detail with the help of practical examples. It covers data mining tools and language such as Weka and R language.
Автор: Singh, Himanshu Название: Practical machine learning and image processing ISBN: 1484241487 ISBN-13(EAN): 9781484241486 Издательство: Springer Рейтинг: Цена: 55890.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание:
Gain insights into image-processing methodologies and algorithms, using machine learning and neural networks in Python. This book begins with the environment setup, understanding basic image-processing terminology, and exploring Python concepts that will be useful for implementing the algorithms discussed in the book. You will then cover all the core image processing algorithms in detail before moving onto the biggest computer vision library: OpenCV. You’ll see the OpenCV algorithms and how to use them for image processing.
The next section looks at advanced machine learning and deep learning methods for image processing and classification. You’ll work with concepts such as pulse coupled neural networks, AdaBoost, XG boost, and convolutional neural networks for image-specific applications. Later you’ll explore how models are made in real time and then deployed using various DevOps tools.
All the concepts in Practical Machine Learning and Image Processing are explained using real-life scenarios. After reading this book you will be able to apply image processing techniques and make machine learning models for customized application.
What You Will Learn
Discover image-processing algorithms and their applications using PythonExplore image processing using the OpenCV libraryUse TensorFlow, scikit-learn, NumPy, and other librariesWork with machine learning and deep learning algorithms for image processingApply image-processing techniques to five real-time projects
Who This Book Is For
Data scientists and software developers interested in image processing and computer vision.
Discover The Incredible World Of Machine Learning With This Amazing Guide
Have you come across the terms machine learning and neural networks in most articles you have recently read? Do you also want to learn how to build a machine learning model that will answer your questions within a blink of your eyes? If you responded yes to any of the above questions, you have come to the right place.
Machine learning and artificial intelligence have been used in different machines and applications to improve the user's experience. One can also use machine learning to make data analysis and predicting the output for some data sets easy. All you need to do is choose the right algorithm, train the model and test the model before you apply it on any real-world tool. It is that simple isn't it?
Apart from this, you will also learn more about:
The Different Types Of Learning Algorithm That You Can Expect To Encounter
The Numerous Applications Of Machine Learning And Deep Learning
The Best Practices For Picking Up Neural Networks
What Are The Best Languages And Libraries To Work With
The Various Problems That You Can Solve With Machine Learning Algorithms
And much more...
Well, you can do it faster if you use Python. This language has made it easy for any user, even an amateur, to build a strong machine learning model since it has numerous directories and libraries that make it easy for one to build a model. Do you want to know how to build a machine learning model and a neural network?
So, what are you waiting for? Grab a copy of this book now
Автор: Railey Brandon Название: Python Machine Learning: A Practical Beginner`s Guide for Understanding Machine Learning, Deep Learning and Neural Networks with Python, Scikit ISBN: 3903331724 ISBN-13(EAN): 9783903331723 Издательство: Неизвестно Рейтинг: Цена: 27580.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Have you come across the terms machine learning and neural networks in most articles you have recently read? Do you also want to learn how to build a machine learning model that will answer your questions within a blink of your eyes? If you responded yes to any of the above questions, you have come to the right place.
Автор: Joydeep Bhattacharjee Название: Practical Machine Learning with Rust ISBN: 1484251202 ISBN-13(EAN): 9781484251201 Издательство: Springer Рейтинг: Цена: 51230.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Explore machine learning in Rust and learn about the intricacies of creating machine learning applications. This book begins by covering the important concepts of machine learning such as supervised, unsupervised, and reinforcement learning, and the basics of Rust. Further, you’ll dive into the more specific fields of machine learning, such as computer vision and natural language processing, and look at the Rust libraries that help create applications for those domains. We will also look at how to deploy these applications either on site or over the cloud.After reading Practical Machine Learning with Rust, you will have a solid understanding of creating high computation libraries using Rust. Armed with the knowledge of this amazing language, you will be able to create applications that are more performant, memory safe, and less resource heavy. What You Will LearnWrite machine learning algorithms in RustUse Rust libraries for different tasks in machine learningCreate concise Rust packages for your machine learning applicationsImplement NLP and computer vision in RustDeploy your code in the cloud and on bare metal servers Who This Book Is For Machine learning engineers and software engineers interested in building machine learning applications in Rust.
Автор: Gollapudi Sunila Название: Practical Machine Learning ISBN: 178439968X ISBN-13(EAN): 9781784399689 Издательство: Неизвестно Рейтинг: Цена: 62520.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание:
Learn how to build Machine Learning applications to solve real-world data analysis challenges with this Machine Learning book - packed with practical tutorials
Key Features
Fully-coded working examples using a wide range of machine learning libraries and tools, including Python, R, Julia, and Spark
Comprehensive practical solutions taking you into the future of machine learning
Go a step further and integrate your machine learning projects with Hadoop
Book Description
This book explores an extensive range of machine learning techniques uncovering hidden tricks and tips for several types of data using practical and real-world examples. While machine learning can be highly theoretical, this book offers a refreshing hands-on approach without losing sight of the underlying principles. Inside, a full exploration of the various algorithms gives you high-quality guidance so you can begin to see just how effective machine learning is at tackling contemporary challenges of big data.
This is the only book you need to implement a whole suite of open source tools, frameworks, and languages in machine learning. We will cover the leading data science languages, Python and R, and the underrated but powerful Julia, as well as a range of other big data platforms including Spark, Hadoop, and Mahout. Practical Machine Learning is an essential resource for the modern data scientists who want to get to grips with its real-world application.
With this book, you will not only learn the fundamentals of machine learning but dive deep into the complexities of real world data before moving on to using Hadoop and its wider ecosystem of tools to process and manage your structured and unstructured data.
You will explore different machine learning techniques for both supervised and unsupervised learning; from decision trees to Na ve Bayes classifiers and linear and clustering methods, you will learn strategies for a truly advanced approach to the statistical analysis of data. The book also explores the cutting-edge advancements in machine learning, with worked examples and guidance on deep learning and reinforcement learning, providing you with practical demonstrations and samples that help take the theory-and mystery-out of even the most advanced machine learning methodologies.
What you will learn
Implement a wide range of algorithms and techniques for tackling complex data
Get to grips with some of the most powerful languages in data science, including R, Python, and Julia
Harness the capabilities of Spark and Hadoop to manage and process data successfully
Apply the appropriate machine learning technique to address real-world problems
Get acquainted with Deep learning and find out how neural networks are being used at the cutting-edge of machine learning
Explore the future of machine learning and dive deeper into polyglot persistence, semantic data, and more
Автор: Subasi, Abdulhamit Название: Practical Machine Learning For Data Analysis Using Python ISBN: 0128213795 ISBN-13(EAN): 9780128213797 Издательство: Elsevier Science Рейтинг: Цена: 110030.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание:
Practical Machine Learning for Data Analysis Using Python is a problem solver's guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation of machine learning knowledge to solve different real-world case studies across various fields, including biomedical signal analysis, healthcare, security, economics, and finance. Moreover, it covers a wide range of machine learning models, including regression, classification, and forecasting. The goal of the book is to help a broad range of readers, including IT professionals, analysts, developers, data scientists, engineers, and graduate students, to solve their own real-world problems.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz