Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

The Master Equation and the Convergence Problem in Mean Field Games: (ams-201), Cardaliaguet Pierre, Delarue Francois, Lasry Jean-Michel


Варианты приобретения
Цена: 73920.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 248 шт.  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Cardaliaguet Pierre, Delarue Francois, Lasry Jean-Michel
Название:  The Master Equation and the Convergence Problem in Mean Field Games: (ams-201)
ISBN: 9780691190716
Издательство: Wiley
Классификация:



ISBN-10: 0691190712
Обложка/Формат: Paperback
Страницы: 232
Вес: 0.39 кг.
Дата издания: 13.08.2019
Серия: Annals of mathematics studies
Язык: English
Размер: 156 x 233 x 20
Читательская аудитория: Tertiary education (us: college)
Подзаголовок: (ams-201)
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: This book describes the latest advances in the theory of mean field games, which are optimal control problems with a continuum of players, each of them interacting with the whole statistical distribution of a population.

The Master Equation and the Convergence Problem in Mean Field Games: (ams-201)

Автор: Cardaliaguet Pierre, Delarue Francois, Lasry Jean-Michel
Название: The Master Equation and the Convergence Problem in Mean Field Games: (ams-201)
ISBN: 0691190704 ISBN-13(EAN): 9780691190709
Издательство: Wiley
Рейтинг:
Цена: 163680.00 T
Наличие на складе: Невозможна поставка.
Описание:

This book describes the latest advances in the theory of mean field games, which are optimal control problems with a continuum of players, each of them interacting with the whole statistical distribution of a population. While it originated in economics, this theory now has applications in areas as diverse as mathematical finance, crowd phenomena, epidemiology, and cybersecurity.

Because mean field games concern the interactions of infinitely many players in an optimal control framework, one expects them to appear as the limit for Nash equilibria of differential games with finitely many players as the number of players tends to infinity. This book rigorously establishes this convergence, which has been an open problem until now. The limit of the system associated with differential games with finitely many players is described by the so-called master equation, a nonlocal transport equation in the space of measures. After defining a suitable notion of differentiability in the space of measures, the authors provide a complete self-contained analysis of the master equation. Their analysis includes the case of common noise problems in which all the players are affected by a common Brownian motion. They then go on to explain how to use the master equation to prove the mean field limit.

This groundbreaking book presents two important new results in mean field games that contribute to a unified theoretical framework for this exciting and fast-developing area of mathematics.



Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия