Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Deep Learning with JavaScript: Neural Networks in Tensorflow.Js, Cai Shanqing, Bileschi Stan, Nielsen Eric


Варианты приобретения
Цена: 61290.00T
Кол-во:
 о цене
Наличие: Невозможна поставка.

в Мои желания

Автор: Cai Shanqing, Bileschi Stan, Nielsen Eric
Название:  Deep Learning with JavaScript: Neural Networks in Tensorflow.Js
ISBN: 9781617296178
Издательство: Manning Publications
Классификация: ISBN-10: 1617296171
Обложка/Формат: Paperback
Страницы: 350
Вес: 0.70 кг.
Дата издания: 07.10.2019
Язык: English
Размер: 231 x 188 x 33
Рейтинг:
Поставляется из: США
Описание: Summary

Deep learning has transformed the fields of computer vision, image processing, and natural language applications. Thanks to TensorFlow.js, now JavaScript developers can build deep learning apps without relying on Python or R. Deep Learning with JavaScript shows developers how they can bring DL technology to the web. Written by the main authors of the TensorFlow library, this new book provides fascinating use cases and in-depth instruction for deep learning apps in JavaScript in your browser or on Node.

About the technology

Running deep learning applications in the browser or on Node-based backends opens up exciting possibilities for smart web applications. With the TensorFlow.js library, you build and train deep learning models with JavaScript. Offering uncompromising production-quality scalability, modularity, and responsiveness, TensorFlow.js really shines for its portability. Its models run anywhere JavaScript runs, pushing ML farther up the application stack.

About the book

In Deep Learning with JavaScript, youll learn to use TensorFlow.js to build deep learning models that run directly in the browser. This fast-paced book, written by Google engineers, is practical, engaging, and easy to follow. Through diverse examples featuring text analysis, speech processing, image recognition, and self-learning game AI, youll master all the basics of deep learning and explore advanced concepts, like retraining existing models for transfer learning and image generation.

Whats inside

- Image and language processing in the browser
- Tuning ML models with client-side data
- Text and image creation with generative deep learning
- Source code samples to test and modify

About the reader

For JavaScript programmers interested in deep learning.

About the author

Shanging Cai, Stanley Bileschi and Eric D. Nielsen are software engineers with experience on the Google Brain team, and were crucial to the development of the high-level API of TensorFlow.js. This book is based in part on the classic, Deep Learning with Python by Fran ois Chollet.

TOC:

PART 1 - MOTIVATION AND BASIC CONCEPTS

1 - Deep learning and JavaScript

PART 2 - A GENTLE INTRODUCTION TO TENSORFLOW.JS

2 - Getting started: Simple linear regression in TensorFlow.js

3 - Adding nonlinearity: Beyond weighted sums

4 - Recognizing images and sounds using convnets

5 - Transfer learning: Reusing pretrained neural networks

PART 3 - ADVANCED DEEP LEARNING WITH TENSORFLOW.JS

6 - Working with data

7 - Visualizing data and models

8 - Underfitting, overfitting, and the universal workflow of machine learning

9 - Deep learning for sequences and text

10 - Generative deep learning

11 - Basics of deep reinforcement learning

PART 4 - SUMMARY AND CLOSING WORDS

12 - Testing, optimizing, and deploying models

13 - Summary, conclusions, and beyond



Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия