Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Computational Uncertainty Quantification for Inverse Problems, Johnathan M. Bardsley


Варианты приобретения
Цена: 53090.00T
Кол-во:
 о цене
Наличие: Невозможна поставка.

в Мои желания

Автор: Johnathan M. Bardsley
Название:  Computational Uncertainty Quantification for Inverse Problems
ISBN: 9781611975376
Издательство: Mare Nostrum (Eurospan)
Классификация:




ISBN-10: 1611975379
Обложка/Формат: Paperback
Страницы: 135
Вес: 0.32 кг.
Дата издания: 30.09.2018
Серия: Computational science and engineering
Язык: English
Размер: 179 x 258 x 17
Читательская аудитория: Professional and scholarly
Ключевые слова: Probability & statistics,Applied mathematics,Mathematical modelling,Stochastics,Mathematical theory of computation
Основная тема: Probability & statistics,Applied mathematics,Mathematical modelling,Stochastics,Mathematical theory of computation
Рейтинг:
Поставляется из: Англии
Описание: This book is an introduction to both computational inverse problems and uncertainty quantification (UQ) for inverse problems. The book also presents more advanced material on Bayesian methods and UQ, including Markov chain Monte Carlo sampling methods for UQ in inverse problems. Each chapter contains MATLAB® code that implements the algorithms and generates the figures, as well as a large number of exercises accessible to both graduate students and researchers. Computational Uncertainty Quantification for Inverse Problems is intended for graduate students, researchers, and applied scientists. It is appropriate for courses on computational inverse problems, Bayesian methods for inverse problems, and UQ methods for inverse problems.
Дополнительное описание: Applied mathematics|Mathematical theory of computation|Probability and statistics|Mathematical modelling|Stochastics


Digital Dice: Computational Solutions to Practical Probability Problems (New in Paperback)

Автор: Nahin Paul J.
Название: Digital Dice: Computational Solutions to Practical Probability Problems (New in Paperback)
ISBN: 0691158215 ISBN-13(EAN): 9780691158211
Издательство: Wiley
Рейтинг:
Цена: 17940.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Some probability problems are so difficult that they stump the smartest mathematicians. But even the hardest of these problems can often be solved with a computer and a Monte Carlo simulation, in which a random-number generator simulates a physical process, such as a million rolls of a pair of dice. This is what Digital Dice is all about: how to ge

Spectral Methods for Uncertainty Quantification

Автор: Olivier Le Maitre; Omar M Knio
Название: Spectral Methods for Uncertainty Quantification
ISBN: 9400731922 ISBN-13(EAN): 9789400731929
Издательство: Springer
Рейтинг:
Цена: 79190.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents applications of spectral methods to problems of uncertainty propagation and quantification in model-based computations, focusing on the computational and algorithmic features of these methods most useful in dealing with models based on partial differential equations, in particular models arising in simulations of fluid flows.

Introduction to Uncertainty Quantification

Автор: Sullivan, T.J.
Название: Introduction to Uncertainty Quantification
ISBN: 3319233947 ISBN-13(EAN): 9783319233949
Издательство: Springer
Рейтинг:
Цена: 55890.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This text provides a framework in which the main objectives of the field of uncertainty quantification (UQ) are defined and an overview of the range of mathematical methods by which they can be achieved. Complete with exercises throughout, the book will equip readers with both theoretical understanding and practical experience of the key mathematical and algorithmic tools underlying the treatment of uncertainty in modern applied mathematics. Students and readers alike are encouraged to apply the mathematical methods discussed in this book to their own favorite problems to understand their strengths and weaknesses, also making the text suitable for a self-study. Uncertainty quantification is a topic of increasing practical importance at the intersection of applied mathematics, statistics, computation and numerous application areas in science and engineering. This text is designed as an introduction to UQ for senior undergraduate and graduate students with a mathematical or statistical background and also for researchers from the mathematical sciences or from applications areas who are interested in the field.

Uncertainty Quantification In Varia

Автор: Jadamba
Название: Uncertainty Quantification In Varia
ISBN: 1138626325 ISBN-13(EAN): 9781138626324
Издательство: Taylor&Francis
Рейтинг:
Цена: 112290.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The primary objective of this book is to present a comprehensive treatment of uncertainty quantification in variational inequalities and some of its generalizations emerging from various network, economic, and engineering models. Some of the developed techniques also apply to machine learning, neural networks, and related fields.

Statistical and Computational Inverse Problems

Автор: Jari Kaipio; E. Somersalo
Название: Statistical and Computational Inverse Problems
ISBN: 1441919643 ISBN-13(EAN): 9781441919649
Издательство: Springer
Рейтинг:
Цена: 97820.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book covers the statistical mechanics approach to computational solution of inverse problems, an innovative area of current research with very promising numerical results.

Computational Problems in Engineering

Автор: Nikos Mastorakis; Valeri Mladenov
Название: Computational Problems in Engineering
ISBN: 3319375490 ISBN-13(EAN): 9783319375496
Издательство: Springer
Рейтинг:
Цена: 130590.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents modern computational techniques for solving problems in electrical, mechanical, civil and chemical engineering. Includes new and advanced methods and variations of known techniques that can solve difficult scientific problems efficiently.

Recurrence Plots and Their Quantifications: Expanding Horizons

Автор: Charles L. Webber, Jr.; Cornel Ioana; Norbert Marw
Название: Recurrence Plots and Their Quantifications: Expanding Horizons
ISBN: 3319299212 ISBN-13(EAN): 9783319299211
Издательство: Springer
Рейтинг:
Цена: 156720.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The chapters in this book originate from the research work and contributions presented at the Sixth International Symposium on Recurrence Plots held in Grenoble, France in June 2015.

Computational Methods for Inverse Problems

Автор: Vogel Curtis R
Название: Computational Methods for Inverse Problems
ISBN: 0898715504 ISBN-13(EAN): 9780898715507
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 70230.00 T
Наличие на складе: Нет в наличии.
Описание: Inverse problems arise in a number of important practical applications, ranging from biomedical imaging to seismic prospecting. This book provides the reader with a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems. It also addresses specialized topics like image reconstruction, parameter identification, total variation methods, nonnegativity constraints, and regularization parameter selection methods. Because inverse problems typically involve the estimation of certain quantities based on indirect measurements, the estimation process is often ill-posed. Regularization methods, which have been developed to deal with this ill-posedness, are carefully explained in the early chapters of Computational Methods for Inverse Problems. The book also integrates mathematical and statistical theory with applications and practical computational methods, including topics like maximum likelihood estimation and Bayesian estimation.

Computational Intelligence in Expensive Optimization Problems

Автор: Yoel Tenne; Chi-Keong Goh
Название: Computational Intelligence in Expensive Optimization Problems
ISBN: 3642107001 ISBN-13(EAN): 9783642107009
Издательство: Springer
Рейтинг:
Цена: 287330.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A combination of theoretical treatment and real-world insight introduce the field of computational intelligence in this valuable reference. Topics include neural networks, frameworks for optimization, parallelization of algorithms, and more.

Computational Approaches to Economic Problems

Автор: Hans M. Amman; B. Rustem; Andrew B. Whinston
Название: Computational Approaches to Economic Problems
ISBN: 0792343972 ISBN-13(EAN): 9780792343974
Издательство: Springer
Рейтинг:
Цена: 194730.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Contains a selection of papers presented at the first conference of the Society for Computational Economics held at ICC Institute, Austin, Texas, May 21-24, 1995. This volume is devoted to applications of computational methods for the empirical analysis of economic and financial systems.

Modeling and Inverse Problems in the Presence of Uncertainty

Автор: Banks H. Thomas, Hu Shuhua, Thompson William Clayt
Название: Modeling and Inverse Problems in the Presence of Uncertainty
ISBN: 1482206420 ISBN-13(EAN): 9781482206425
Издательство: Taylor&Francis
Рейтинг:
Цена: 193950.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Modeling and Inverse Problems in the Presence of Uncertainty collects recent research--including the authors' own substantial projects--on uncertainty propagation and quantification. It covers two sources of uncertainty: where uncertainty is present primarily due to measurement errors and where uncertainty is present due to the modeling formulation itself.

After a useful review of relevant probability and statistical concepts, the book summarizes mathematical and statistical aspects of inverse problem methodology, including ordinary, weighted, and generalized least-squares formulations. It then discusses asymptotic theories, bootstrapping, and issues related to the evaluation of correctness of assumed form of statistical models.

The authors go on to present methods for evaluating and comparing the validity of appropriateness of a collection of models for describing a given data set, including statistically based model selection and comparison techniques. They also explore recent results on the estimation of probability distributions when they are embedded in complex mathematical models and only aggregate (not individual) data are available. In addition, they briefly discuss the optimal design of experiments in support of inverse problems for given models.

The book concludes with a focus on uncertainty in model formulation itself, covering the general relationship of differential equations driven by white noise and the ones driven by colored noise in terms of their resulting probability density functions. It also deals with questions related to the appropriateness of discrete versus continuum models in transitions from small to large numbers of individuals.

With many examples throughout addressing problems in physics, biology, and other areas, this book is intended for applied mathematicians interested in deterministic and/or stochastic models and their interactions. It is also suitable for scientists in biology, medicine, engineering, and physics working on basic modeling and inverse problems, uncertainty in modeling, propagation of uncertainty, and statistical modeling.



Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия