Контакты/Проезд
Доставка и Оплата
Помощь/Возврат
Корзина ()
Мои желания ()
История
Промокоды
Ваши заказы
+7 707 857-29-98
+7(7172) 65-23-70
10:00-18:00 пн-пт
shop@logobook.kz
Российская литература
Поиск книг
Найти
Зарубежные издательства
Российские издательства
Авторы
|
Каталог книг
|
Издательства
|
Новинки
|
Учебная литература
|
Акции
|
Бестселлеры
|
|
Войти
Регистрация
Забыли?
Learning from Imbalanced Data Sets, Fernandez Alberto, Garcia Salvador, Galar Mikel
Варианты приобретения
Цена:
139750.00T
Кол-во:
Наличие:
Поставка под заказ.
Есть в наличии на складе поставщика.
Склад Америка: 152 шт.
При оформлении заказа до:
2025-09-29
Ориентировочная дата поставки:
начало Ноября
При условии наличия книги у поставщика.
Добавить в корзину
в Мои желания
Автор:
Fernandez Alberto, Garcia Salvador, Galar Mikel
Название:
Learning from Imbalanced Data Sets
ISBN:
9783319980737
Издательство:
Springer
Классификация:
Исследования средств массовой информации
Электроника
Робототехника
Сетевое оборудование
Компьютерные сети и коммуникации
Искусственный интеллект
ISBN-10: 3319980734
Обложка/Формат: Hardcover
Страницы: 377
Вес: 0.73 кг.
Дата издания: 07.12.2018
Язык: English
Издание: 1st ed. 2018
Иллюстрации: 50 illustrations, color; 21 illustrations, black and white; xviii, 377 p. 71 illus., 50 illus. in color.
Размер: 234 x 156 x 22
Читательская аудитория: Professional & vocational
Ссылка на Издательство:
Link
Рейтинг:
Поставляется из: Германии
Описание: This book provides a general and comprehensible overview of imbalanced learning. It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way.This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches.Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided.This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering. It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions.
Дополнительное описание: 1 Introduction to KDD and Data Science.- 2 Foundations on Imbalanced Classification.- 3 Performance measures.- 4 Cost-sensitive Learning.- 5 Data Level Preprocessing Methods.- 6 Algorithm-level Approaches.- 7 Ensemble Learning.- 8 Imbalanced Classificatio
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Заказ по телефону/email
Помощь
Возврат товара
Есть вопрос?
Российский офис
О компании
Политика конфиденциальности
В Контакте
В Контакте Мед
Мобильная версия