Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Cremona Groups and the Icosahedron, Cheltsov Ivan, Shramov Constantin


Варианты приобретения
Цена: 163330.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 186 шт.  
При оформлении заказа до: 2025-08-18
Ориентировочная дата поставки: конец Сентября - начало Октября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Cheltsov Ivan, Shramov Constantin
Название:  Cremona Groups and the Icosahedron
ISBN: 9781482251593
Издательство: Taylor&Francis
Классификация:
ISBN-10: 1482251590
Обложка/Формат: Hardback
Страницы: 527
Вес: 0.88 кг.
Дата издания: 10.08.2015
Серия: Chapman & hall/crc monographs and research notes in mathematics
Язык: English
Иллюстрации: 10 tables, black and white; 36 illustrations, black and white
Размер: 242 x 166 x 36
Читательская аудитория: Tertiary education (us: college)
Ключевые слова: Algebra, MATHEMATICS / Algebra / General,MATHEMATICS / Geometry / General,MATHEMATICS / Number Theory
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Европейский союз
Описание:

Cremona Groups and the Icosahedron focuses on the Cremona groups of ranks 2 and 3 and describes the beautiful appearances of the icosahedral group A5 in them. The book surveys known facts about surfaces with an action of A5, explores A5-equivariant geometry of the quintic del Pezzo threefold V5, and gives a proof of its A5-birational rigidity.

The authors explicitly describe many interesting A5-invariant subvarieties of V5, including A5-orbits, low-degree curves, invariant anticanonical K3 surfaces, and a mildly singular surface of general type that is a degree five cover of the diagonal Clebsch cubic surface. They also present two birational selfmaps of V5 that commute with A5-action and use them to determine the whole group of A5-birational automorphisms. As a result of this study, they produce three non-conjugate icosahedral subgroups in the Cremona group of rank 3, one of them arising from the threefold V5.

This book presents up-to-date tools for studying birational geometry of higher-dimensional varieties. In particular, it provides readers with a deep understanding of the biregular and birational geometry of V5.



Modular Curves and Abelian Varieties

Автор: John Cremona; Joan-Carles Lario; Jordi Quer; Kenne
Название: Modular Curves and Abelian Varieties
ISBN: 3764365862 ISBN-13(EAN): 9783764365868
Издательство: Springer
Рейтинг:
Цена: 111790.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: It would be difficult to overestimate the influence and importance of modular forms, modular curves, and modular abelian varieties in the development of num- ber theory and arithmetic geometry during the last fifty years. These subjects lie at the heart of many past achievements and future challenges. For example, the theory of complex multiplication, the classification of rational torsion on el- liptic curves, the proof of Fermat's Last Theorem, and many results towards the Birch and Swinnerton-Dyer conjecture all make crucial use of modular forms and modular curves. A conference was held from July 15 to 18, 2002, at the Centre de Recerca Matematica (Bellaterra, Barcelona) under the title "Modular Curves and Abelian Varieties." Our conference presented some of the latest achievements in the theory to a diverse audience that included both specialists and young researchers. We emphasized especially the conjectural generalization of the Shimura-Taniyama conjecture to elliptic curves over number fields other than the field of rational numbers (elliptic Q-curves) and abelian varieties of dimension larger than one (abelian varieties of GL2-type).

Modular Curves and Abelian Varieties

Автор: John Cremona; Joan-Carles Lario; Jordi Quer; Kenne
Название: Modular Curves and Abelian Varieties
ISBN: 3034896212 ISBN-13(EAN): 9783034896214
Издательство: Springer
Рейтинг:
Цена: 93160.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: It would be difficult to overestimate the influence and importance of modular forms, modular curves, and modular abelian varieties in the development of num- ber theory and arithmetic geometry during the last fifty years. These subjects lie at the heart of many past achievements and future challenges. For example, the theory of complex multiplication, the classification of rational torsion on el- liptic curves, the proof of Fermat's Last Theorem, and many results towards the Birch and Swinnerton-Dyer conjecture all make crucial use of modular forms and modular curves. A conference was held from July 15 to 18, 2002, at the Centre de Recerca Matematica (Bellaterra, Barcelona) under the title "Modular Curves and Abelian Varieties". Our conference presented some of the latest achievements in the theory to a diverse audience that included both specialists and young researchers. We emphasized especially the conjectural generalization of the Shimura-Taniyama conjecture to elliptic curves over number fields other than the field of rational numbers (elliptic Q-curves) and abelian varieties of dimension larger than one (abelian varieties of GL2-type).


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия