Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Genetic Algorithms for Machine Learning, John J. Grefenstette


Варианты приобретения
Цена: 139750.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 260 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: John J. Grefenstette
Название:  Genetic Algorithms for Machine Learning
ISBN: 9781461361824
Издательство: Springer
Классификация: ISBN-10: 1461361826
Обложка/Формат: Paperback
Страницы: 165
Вес: 0.25 кг.
Дата издания: 22.12.2012
Язык: English
Размер: 234 x 156 x 9
Основная тема: Computer Science
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии

Information Theory, Inference and Learning Algorithms

Автор: David J. C. MacKay
Название: Information Theory, Inference and Learning Algorithms
ISBN: 0521642981 ISBN-13(EAN): 9780521642989
Издательство: Cambridge Academ
Рейтинг:
Цена: 60190.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This exciting and entertaining textbook is ideal for courses in information, communication and coding. It is an unparalleled entry point to these subjects for professionals working in areas as diverse as computational biology, data mining, financial engineering and machine learning.

Pattern Recognition and Machine Learning

Автор: Christopher M. Bishop
Название: Pattern Recognition and Machine Learning
ISBN: 0387310738 ISBN-13(EAN): 9780387310732
Издательство: Springer
Рейтинг:
Цена: 79190.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Learning Radiology: Recognizing the Basics, 3rd Edition

Автор: William Herring
Название: Learning Radiology: Recognizing the Basics, 3rd Edition
ISBN: 0323328075 ISBN-13(EAN): 9780323328074
Издательство: Elsevier Science
Рейтинг:
Цена: 42240.00 T
Наличие на складе: Поставка под заказ.
Описание: A must-have for anyone who will be required to read and interpret common radiologic images, Learning Radiology: Recognizing the Basics is an image-filled, practical, and easy-to-read introduction to key imaging modalities. Skilled radiology teacher William Herring, MD, masterfully covers exactly what you need to know to effectively interpret medical images of all modalities. Learn the latest on ultrasound, MRI, CT, patient safety, dose reduction, radiation protection, and more, in a time-friendly format with brief, bulleted text and abundant high-quality images. Then ensure your mastery of the material with additional online content, bonus images, and self-assessment exercises at Student Consult. Identify a wide range of common and uncommon conditions based upon their imaging findings. Arrive at diagnoses by following a pattern recognition approach, and logically overcome difficult diagnostic challenges with the aid of decision trees. Quickly grasp the fundamentals you need to know through more than 700 images and an easy-to-use format and pedagogy, including: bolding of key points and icons designating special content; Diagnostic Pitfalls; Really, Really Important Points; Weblinks; and Take-Home Points. Gauge your mastery of the material and build confidence with extra images, bonus content, interactive self-assessment exercises, and USMLE-style Q&A that provide effective chapter review and quick practice for your exams. Apply the latest recommendations on patient safety, dose reduction and radiation protection Benefit from the extensive knowledge and experience of esteemed author Dr. William Herring-a skilled radiology teacher and the host of his own specialty website, www.learningradiology.com. Stay current in the latest advancements and developments with meticulous updates throughout including a new chapter on Pediatric Radiology as well as more than 60 new and updated photos, many highlighting newer imaging modalities. Maximize your learning experience with interactive Student Consult extras videos/images of 3D images, functional imaging examinations, dynamic studies, and additional assessments. Student Consult eBook version included with purchase. This enhanced eBook experience allows you to search all of the text, figures, references, and videos from the book on a variety of devices.

Machine Learning

Автор: Kevin Murphy
Название: Machine Learning
ISBN: 0262018020 ISBN-13(EAN): 9780262018029
Издательство: MIT Press
Рейтинг:
Цена: 124150.00 T
Наличие на складе: Невозможна поставка.
Описание:

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.

Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.

The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package -- PMTK (probabilistic modeling toolkit) -- that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.


Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies

Автор: Kelleher John D., Macnamee Brian, D`Arcy Aoife
Название: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies
ISBN: 0262029448 ISBN-13(EAN): 9780262029445
Издательство: MIT Press
Рейтинг:
Цена: 90290.00 T
Наличие на складе: Нет в наличии.
Описание:

A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.

Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context.

After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals.


Fundamentals of machining and machine tools

Автор: Boothroyd, G.
Название: Fundamentals of machining and machine tools
ISBN: 1574446592 ISBN-13(EAN): 9781574446593
Издательство: Taylor&Francis
Рейтинг:
Цена: 148010.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Reflecting changes in machining practice, Fundamentals of Machining and Machine Tools, Third Edition emphasizes the economics of machining processes and design for machining. This edition includes new material on super-hard cutting tool materials, tool geometries, and surface coatings. It describes recent developments in high-speed machining, hard machining, and cutting fluid applications such as dry and minimum-quantity lubrication machining. It presents analytical methods that outline the limitations of various appaches. This edition also features expanded information on tool geometries for chip breaking and control as well as improvements in cost modeling of machining processes.

Genetic Algorithms for Machine Learning

Автор: John J. Grefenstette
Название: Genetic Algorithms for Machine Learning
ISBN: 0792394070 ISBN-13(EAN): 9780792394075
Издательство: Springer
Рейтинг:
Цена: 186290.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Features the articles that were selected from preliminary versions presented at the International Conference on Genetic Algorithms in June 1991, as well as at a special Workshop on Genetic Algorithms for Machine Learning at the same Conference.

Statistical Learning for Biomedical Data

Автор: Malley
Название: Statistical Learning for Biomedical Data
ISBN: 0521699096 ISBN-13(EAN): 9780521699099
Издательство: Cambridge Academ
Рейтинг:
Цена: 43290.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Biomedical researchers need machine learning techniques to make predictions such as survival/death or response to treatment when data sets are large and complex. This highly motivating introduction to these machines explains underlying principles in nontechnical language, using many examples and figures, and connects these new methods to familiar techniques.

Machine Learning

Автор: Marsland
Название: Machine Learning
ISBN: 1466583282 ISBN-13(EAN): 9781466583283
Издательство: Taylor&Francis
Рейтинг:
Цена: 80630.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

A Proven, Hands-On Approach for Students without a Strong Statistical Foundation

Since the best-selling first edition was published, there have been several prominent developments in the field of machine learning, including the increasing work on the statistical interpretations of machine learning algorithms. Unfortunately, computer science students without a strong statistical background often find it hard to get started in this area.

Remedying this deficiency, Machine Learning: An Algorithmic Perspective, Second Edition helps students understand the algorithms of machine learning. It puts them on a path toward mastering the relevant mathematics and statistics as well as the necessary programming and experimentation.

New to the Second Edition

  • Two new chapters on deep belief networks and Gaussian processes
  • Reorganization of the chapters to make a more natural flow of content
  • Revision of the support vector machine material, including a simple implementation for experiments
  • New material on random forests, the perceptron convergence theorem, accuracy methods, and conjugate gradient optimization for the multi-layer perceptron
  • Additional discussions of the Kalman and particle filters
  • Improved code, including better use of naming conventions in Python

Suitable for both an introductory one-semester course and more advanced courses, the text strongly encourages students to practice with the code. Each chapter includes detailed examples along with further reading and problems. All of the code used to create the examples is available on the author's website.


Extending the Scalability of Linkage Learning Genetic Algorithms

Автор: Ying-ping Chen
Название: Extending the Scalability of Linkage Learning Genetic Algorithms
ISBN: 3642066712 ISBN-13(EAN): 9783642066719
Издательство: Springer
Рейтинг:
Цена: 130430.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Introduction.- Genetic Algorithms and Genetic Linkage.- Genetic Linkage Learning Techniques .- Linkage Learning Genetic Algorithm.- Preliminaries: Assumptions and the Test Problem.- A First Improvement: Using Promoters.- Convergence Time for the Linkage Learning Genetic Algorithm.-Introducing Subchromosome Representations.- Conclusions.

Adaptive Learning by Genetic Algorithms

Автор: Herbert Dawid
Название: Adaptive Learning by Genetic Algorithms
ISBN: 3642621066 ISBN-13(EAN): 9783642621062
Издательство: Springer
Рейтинг:
Цена: 93160.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: I have also added a new section in chapter 3 which deals with the question how well empirically observed phenomena can be explained by GA simulations. A new section in chapter 6 presents a rather extensive analysis of the behavior of a two population GA in the framework of a sealed bid double auction market.

Classification and Learning Using Genetic Algorithms

Автор: Sanghamitra Bandyopadhyay; Sankar Kumar Pal
Название: Classification and Learning Using Genetic Algorithms
ISBN: 3642080545 ISBN-13(EAN): 9783642080548
Издательство: Springer
Цена: 130430.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

This book provides a unified framework that describes how genetic learning can be used to design pattern recognition and learning systems. It examines how a search technique, the genetic algorithm, can be used for pattern classification mainly through approximating decision boundaries. Coverage also demonstrates the effectiveness of the genetic classifiers vis- -vis several widely used classifiers, including neural networks.



Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия