Diophantine Approximation on Linear Algebraic Groups, Michel Waldschmidt
Автор: W.M. Schmidt Название: Diophantine Approximation ISBN: 3540097627 ISBN-13(EAN): 9783540097624 Издательство: Springer Рейтинг: Цена: 46540.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: In 1970, at the University of Colorado, the author delivered a course of lectures on his famous generalization, relating to Roth`s theorem on rational approxi- mations to algebraic numbers. This volume is a version of the original mimeographed notes on the course.
Автор: Junjiro Noguchi; J?rg Winkelmann Название: Nevanlinna Theory in Several Complex Variables and Diophantine Approximation ISBN: 4431545700 ISBN-13(EAN): 9784431545705 Издательство: Springer Рейтинг: Цена: 111790.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book reviews higher dimensional Nevanlinna theory and its relationship with Diophantine approximation theory. Coverage builds up from the classical theory of meromorphic functions on the complex plane with full proofs, to the current state of research.
Автор: Yuan Wang Название: Diophantine Equations and Inequalities in Algebraic Number Fields ISBN: 3642634893 ISBN-13(EAN): 9783642634895 Издательство: Springer Рейтинг: Цена: 46570.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: The circle method has its genesis in a paper of Hardy and Ramanujan (see Hardy 1])in 1918concernedwiththepartitionfunction andtheproblemofrep- resenting numbers as sums ofsquares. Later, in a series of papers beginning in 1920entitled "some problems of'partitio numerorum''', Hardy and Littlewood (see Hardy 1]) created and developed systematically a new analytic method, the circle method in additive number theory. The most famous problems in ad- ditive number theory, namely Waring's problem and Goldbach's problem, are treated in their papers. The circle method is also called the Hardy-Littlewood method. Waring's problem may be described as follows: For every integer k 2 2, there is a number s= s( k) such that every positive integer N is representable as (1) where Xi arenon-negative integers. This assertion wasfirst proved by Hilbert 1] in 1909. Using their powerful circle method, Hardy and Littlewood obtained a deeper result on Waring's problem. They established an asymptotic formula for rs(N), the number of representations of N in the form (1), namely k 1 provided that 8 2 (k - 2)2 - +5. Here
Автор: Gisbert W?stholz Название: Diophantine Approximation and Transcendence Theory ISBN: 3540185976 ISBN-13(EAN): 9783540185970 Издательство: Springer Рейтинг: Цена: 41920.00 T Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: J?zsef Beck Название: Probabilistic Diophantine Approximation ISBN: 3319107402 ISBN-13(EAN): 9783319107400 Издательство: Springer Рейтинг: Цена: 111790.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book gives a comprehensive treatment of random phenomena and distribution results in diophantine approximation, with a particular emphasis on quadratic irrationals.
Автор: Junjiro Noguchi; J?rg Winkelmann Название: Nevanlinna Theory in Several Complex Variables and Diophantine Approximation ISBN: 4431562133 ISBN-13(EAN): 9784431562139 Издательство: Springer Рейтинг: Цена: 88500.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book reviews higher dimensional Nevanlinna theory and its relationship with Diophantine approximation theory. Coverage builds up from the classical theory of meromorphic functions on the complex plane with full proofs, to the current state of research.
Автор: J?zsef Beck Название: Probabilistic Diophantine Approximation ISBN: 3319354655 ISBN-13(EAN): 9783319354651 Издательство: Springer Рейтинг: Цена: 88500.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book gives a comprehensive treatment of random phenomena and distribution results in diophantine approximation, with a particular emphasis on quadratic irrationals.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz