Bayesian Analysis of Failure Time Data Using P-Splines, Matthias Kaeding
Автор: Kohler Название: Data Analysis Using Stata, Third Edition ISBN: 1597181102 ISBN-13(EAN): 9781597181105 Издательство: Taylor&Francis Рейтинг: Цена: 74510.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание:
Data Analysis Using Stata, Third Edition is a comprehensive introduction to both statistical methods and Stata. Beginners will learn the logic of data analysis and interpretation and easily become self-sufficient data analysts. Readers already familiar with Stata will find it an enjoyable resource for picking up new tips and tricks.
The book is written as a self-study tutorial and organized around examples. It interactively introduces statistical techniques such as data exploration, description, and regression techniques for continuous and binary dependent variables. Step by step, readers move through the entire process of data analysis and in doing so learn the principles of Stata, data manipulation, graphical representation, and programs to automate repetitive tasks. This third edition includes advanced topics, such as factor-variables notation, average marginal effects, standard errors in complex survey, and multiple imputation in a way, that beginners of both data analysis and Stata can understand.
Using data from a longitudinal study of private households, the authors provide examples from the social sciences that are relatable to researchers from all disciplines. The examples emphasize good statistical practice and reproducible research. Readers are encouraged to download the companion package of datasets to replicate the examples as they work through the book. Each chapter ends with exercises to consolidate acquired skills.
Автор: Gelman Название: Bayesian Data Analysis, Third Edition ISBN: 1439840954 ISBN-13(EAN): 9781439840955 Издательство: Taylor&Francis Рейтинг: Цена: 73920.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Winner of the 2016 De Groot Prize from the International Society for Bayesian Analysis Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Автор: Agung Название: Time Series Data Analysis Using Eviews ISBN: 0470823674 ISBN-13(EAN): 9780470823675 Издательство: Wiley Рейтинг: Цена: 104490.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book is a practical guide to selecting and applying the most appropriate time series model and analysis of data sets using EViews.
Автор: John Kruschke Название: Doing Bayesian Data Analysis, ISBN: 0124058884 ISBN-13(EAN): 9780124058880 Издательство: Elsevier Science Рейтинг: Цена: 79710.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание:
Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, Second Edition provides an accessible approach for conducting Bayesian data analysis, as material is explained clearly with concrete examples. Included are step-by-step instructions on how to carry out Bayesian data analyses in the popular and free software R and WinBugs, as well as new programs in JAGS and Stan. The new programs are designed to be much easier to use than the scripts in the first edition. In particular, there are now compact high-level scripts that make it easy to run the programs on your own data sets.
The book is divided into three parts and begins with the basics: models, probability, Bayes' rule, and the R programming language. The discussion then moves to the fundamentals applied to inferring a binomial probability, before concluding with chapters on the generalized linear model. Topics include metric-predicted variable on one or two groups; metric-predicted variable with one metric predictor; metric-predicted variable with multiple metric predictors; metric-predicted variable with one nominal predictor; and metric-predicted variable with multiple nominal predictors. The exercises found in the text have explicit purposes and guidelines for accomplishment.
This book is intended for first-year graduate students or advanced undergraduates in statistics, data analysis, psychology, cognitive science, social sciences, clinical sciences, and consumer sciences in business.
Accessible, including the basics of essential concepts of probability and random sampling
Examples with R programming language and JAGS software
Comprehensive coverage of all scenarios addressed by non-Bayesian textbooks: t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis)
Coverage of experiment planning
R and JAGS computer programming code on website
Exercises have explicit purposes and guidelines for accomplishment
Provides step-by-step instructions on how to conduct Bayesian data analyses in the popular and free software R and WinBugs
Автор: Thompson John Название: Bayesian Analysis with Stata ISBN: 1597181412 ISBN-13(EAN): 9781597181419 Издательство: Taylor&Francis Рейтинг: Цена: 57150.00 T Наличие на складе: Невозможна поставка. Описание:
Bayesian Analysis with Stata is written for anyone interested in applying Bayesian methods to real data easily. The book shows how modern analyses based on Markov chain Monte Carlo (MCMC) methods are implemented in Stata both directly and by passing Stata datasets to OpenBUGS or WinBUGS for computation, allowing Stata's data management and graphing capability to be used with OpenBUGS/WinBUGS speed and reliability.
The book emphasizes practical data analysis from the Bayesian perspective, and hence covers the selection of realistic priors, computational efficiency and speed, the assessment of convergence, the evaluation of models, and the presentation of the results. Every topic is illustrated in detail using real-life examples, mostly drawn from medical research.
The book takes great care in introducing concepts and coding tools incrementally so that there are no steep patches or discontinuities in the learning curve. The book's content helps the user see exactly what computations are done for simple standard models and shows the user how those computations are implemented. Understanding these concepts is important for users because Bayesian analysis lends itself to custom or very complex models, and users must be able to code these themselves.
Bayesian Data Analysis in Ecology Using Linear Modelswith R, BUGS, and STAN examines the Bayesian and frequentist methods of conducting data analyses. The book provides the theoretical background in an easy-to-understand approach, encouraging readers to examine the processes that generated their data. Including discussions of model selection, model checking, and multi-model inference, the book also uses effect plots that allow a natural interpretation of data. Bayesian Data Analysis in Ecology Using Linear Modelswith R, BUGS, and STAN introduces Bayesian software, using R for the simple modes, and flexible Bayesian software (BUGS and Stan) for the more complicated ones. Guiding the ready from easy toward more complex (real) data analyses ina step-by-step manner, the book presents problems and solutions--including all R codes--that are most often applicable to other data and questions, making it an invaluable resource for analyzing a variety of data types.
Автор: Muller, P., Quintana, F.A., Jara, A., Hanson, T. Название: Bayesian Nonparametric Data Analysis ISBN: 3319189670 ISBN-13(EAN): 9783319189673 Издательство: Springer Рейтинг: Цена: 79190.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones.
Автор: Jianguo Sun Название: The Statistical Analysis of Interval-censored Failure Time Data ISBN: 1441921923 ISBN-13(EAN): 9781441921925 Издательство: Springer Рейтинг: Цена: 153720.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book collects and unifies statistical models and methods that have been proposed for analyzing interval-censored failure time data. It provides the first comprehensive coverage of the topic and complements the books on right-censored data.
Автор: L. Bauwens Название: Bayesian Full Information Analysis of Simultaneous Equation Models Using Integration by Monte Carlo ISBN: 3540133844 ISBN-13(EAN): 9783540133841 Издательство: Springer Рейтинг: Цена: 102480.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: In their review of the "Bayesian analysis of simultaneous equation systems", Dr ze and Richard (1983) - hereafter DR - express the following viewpoint about the present state of development of the Bayesian full information analysis of such sys- tems i) the method allows "a flexible specification of the prior density, including well defined noninformative prior measures"; ii) it yields "exact finite sample posterior and predictive densities". However, they call for further developments so that these densities can be eval- uated through 'numerical methods, using an integrated software packa e. To that end, they recommend the use of a Monte Carlo technique, since van Dijk and Kloek (1980) have demonstrated that "the integrations can be done and how they are done". In this monograph, we explain how we contribute to achieve the developments suggested by Dr ze and Richard. A basic idea is to use known properties of the porterior density of the param- eters of the structural form to design the importance functions, i. e. approximations of the posterior density, that are needed for organizing the integrations.
Автор: Gregory Название: Bayesian Logical Data Analysis for the Physical Sciences ISBN: 0521150124 ISBN-13(EAN): 9780521150125 Издательство: Cambridge Academ Рейтинг: Цена: 69690.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Increasingly, researchers in many branches of science are coming into contact with Bayesian statistics or Bayesian probability theory. This book provides a clear exposition of the underlying concepts with large numbers of worked examples and problem sets. Background material is provided in appendices and supporting Mathematica (R) notebooks are available.
Автор: Blasco, Agustin Название: Bayesian data analysis for animal scientists ISBN: 3319542737 ISBN-13(EAN): 9783319542737 Издательство: Springer Рейтинг: Цена: 93160.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: In this book, we provide an easy introduction to Bayesian inference using MCMC techniques, making most topics intuitively reasonable and deriving to appendixes the more complicated matters.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz