Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Transparent data mining for big and small data., Cerquitelli, Tania, Quercia, Daniele, Pasquale, Frank (Eds.)


Варианты приобретения
Цена: 111790.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 200 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Cerquitelli, Tania, Quercia, Daniele, Pasquale, Frank (Eds.)
Название:  Transparent data mining for big and small data.
Перевод названия: Сбор данных из открытых источников для больших и малых массивов данных
ISBN: 9783319540238
Издательство: Springer
Классификация:







ISBN-10: 3319540238
Обложка/Формат: Hardcover
Страницы: 215
Вес: 0.52 кг.
Дата издания: 15.05.2017
Серия: Studies in big data
Язык: English
Издание: 1st ed. 2017
Иллюстрации: 17 tables, color; 23 illustrations, color; xv, 215 p. 23 illus. in color.
Размер: 242 x 165 x 20
Читательская аудитория: Professional & vocational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book focuses on new and emerging data mining solutions that offer a greater level of transparency than existing solutions.

Data Science For Business: What You Need To Know About Data Mining And Dataanalytic Thinking

Автор: Foster Provost
Название: Data Science For Business: What You Need To Know About Data Mining And Dataanalytic Thinking
ISBN: 1449361323 ISBN-13(EAN): 9781449361327
Издательство: Wiley
Рейтинг:
Цена: 42230.00 T
Наличие на складе: Есть
Описание: This broad, deep, but not-too-technical guide introduces you to the fundamental principles of data science and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect.

Predictive Analytics, Data Mining and Big Data

Автор: Finlay Steven
Название: Predictive Analytics, Data Mining and Big Data
ISBN: 1137379278 ISBN-13(EAN): 9781137379276
Издательство: Springer
Рейтинг:
Цена: 37260.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This in-depth guide provides managers with a solid understanding of data and data trends, the opportunities that it can offer to businesses, and the dangers of these technologies. Written in an accessible style, Steven Finlay provides a contextual roadmap for developing solutions that deliver benefits to organizations.

Data Mining and Knowledge Discovery for Big Data

Автор: Wesley W. Chu
Название: Data Mining and Knowledge Discovery for Big Data
ISBN: 3662509458 ISBN-13(EAN): 9783662509456
Издательство: Springer
Рейтинг:
Цена: 121890.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book address topics ranging from mining data from opinion, spatiotemporal databases, discriminative subgraph patterns, path knowledge discovery, social media, and privacy issues to the subject of computation reduction via binary matrix factorization.

Data Mining with R

Автор: Torgo
Название: Data Mining with R
ISBN: 1439810184 ISBN-13(EAN): 9781439810187
Издательство: Taylor&Francis
Рейтинг:
Цена: 66340.00 T
Наличие на складе: Поставка под заказ.
Описание: This hands-on book uses practical examples to illustrate the power of R and data mining. Assuming no prior knowledge of R or data mining/statistical techniques, it covers a diverse set of problems that pose different challenges in terms of size, type of data, goals of analysis, and analytical tools. The main data mining processes and techniques are presented through detailed, real-world case studies. With these case studies, the author supplies all necessary steps, code, and data. Mirroring the do-it-yourself approach of the text, the supporting website provides data sets and R code.

Data Mining Methods for the Content Analyst

Автор: Leetaru Kalev
Название: Data Mining Methods for the Content Analyst
ISBN: 0415895146 ISBN-13(EAN): 9780415895149
Издательство: Taylor&Francis
Рейтинг:
Цена: 43890.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: With continuous advancements and an increase in user popularity, data mining technologies serve as an invaluable resource for researchers across a wide range of disciplines in the humanities and social sciences. In this comprehensive guide, author and research scientist Kalev Leetaru introduces the approaches, strategies, and methodologies of current data mining techniques, offering insights for new and experienced users alike. Designed as an instructive reference to computer-based analysis approaches, each chapter of this resource explains a set of core concepts and analytical data mining strategies, along with detailed examples and steps relating to current data mining practices. Every technique is considered with regard to context, theory of operation and methodological concerns, and focuses on the capabilities and strengths relating to these technologies. In addressing critical methodologies and approaches to automated analytical techniques, this work provides an essential overview to a broad innovative field.

Data Mining: The Textbook

Автор: С.Aggarwal
Название: Data Mining: The Textbook
ISBN: 3319141414 ISBN-13(EAN): 9783319141411
Издательство: Springer
Рейтинг:
Цена: 65210.00 T
Наличие на складе: Поставка под заказ.
Описание: This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues.

Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.

Автор: Witten, Ian H.
Название: Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.
ISBN: 0128042915 ISBN-13(EAN): 9780128042915
Издательство: Elsevier Science
Рейтинг:
Цена: 61750.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.

Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.

Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.

It contains

  • Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
  • Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
  • Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.

  • Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
  • Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
  • Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
  • Includes open-access online courses that introduce practical applications of the material in the book

Data Mining and Big Data

Автор: Tan
Название: Data Mining and Big Data
ISBN: 3319409727 ISBN-13(EAN): 9783319409726
Издательство: Springer
Рейтинг:
Цена: 74530.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The LNCS volume LNCS 9714 constitutes the refereed proceedings of the International Conference on Data Mining and Big Data, DMBD 2016, held in Bali, Indonesia, in June 2016. The 57 papers presented in this volume were carefully reviewed and selected from 115 submissions.

Data Mining and Knowledge Discovery for Big Data

Автор: Chu Wesley W.
Название: Data Mining and Knowledge Discovery for Big Data
ISBN: 3642408362 ISBN-13(EAN): 9783642408366
Издательство: Springer
Рейтинг:
Цена: 139310.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book address topics ranging from mining data from opinion, spatiotemporal databases, discriminative subgraph patterns, path knowledge discovery, social media, and privacy issues to the subject of computation reduction via binary matrix factorization.

Matrix Methods in Data Mining and Pattern Recognition

Автор: Lars Eld?n
Название: Matrix Methods in Data Mining and Pattern Recognition
ISBN: 0898716268 ISBN-13(EAN): 9780898716269
Издательство: Cambridge Academ
Рейтинг:
Цена: 60190.00 T
Наличие на складе: Поставка под заказ.
Описание: Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed include classification of handwritten digits, text mining, text summarization, pagerank computations related to the Google search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.

Data Mining Algorithms: Explained Using R

Автор: Pawel Cichosz
Название: Data Mining Algorithms: Explained Using R
ISBN: 111833258X ISBN-13(EAN): 9781118332580
Издательство: Wiley
Рейтинг:
Цена: 66470.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Data Mining Algorithms is a practical, technically-oriented guide to data mining algorithms that covers the most important algorithms for building classification, regression, and clustering models, as well as techniques used for attribute selection and transformation, model quality evaluation, and creating model ensembles.

Data Mining and Predictive Analysis

Автор: Colleen McCue
Название: Data Mining and Predictive Analysis
ISBN: 0128002298 ISBN-13(EAN): 9780128002292
Издательство: Elsevier Science
Рейтинг:
Цена: 66240.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis, 2nd Edition, describes clearly and simply how crime clusters and other intelligence can be used to deploy security resources most effectively. Rather than being reactive,security agencies can anticipate and prevent crime through the appropriate application of data mining and the use of standard computer programs. Data Mining and Predictive Analysis offers a clear, practical starting point for professionals who need to use data mining inhomeland security, security analysis, and operational law enforcementsettings.This revised text highlights new and emerging technology, discusses the importance of analytic contextfor ensuring successful implementation of advanced analytics in the operational setting, and covers new analytic service delivery models that increase ease of use and access to high-end technology and analytic capabilities. The use of predictive analytics inintelligence and securityanalysis enables the development of meaningful, information based tactics, strategy, and policy decisions in the operational public safety and security environment.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия